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Abstract

Griliches, Jorgenson and Hulten showed how to construct age specific user costs of capital or
vintage rental prices that depended on the particular form of depreciation that was assumed.
However, instead of assuming that the vintage rental prices represent the relative efficiencies of
vintage specific assets and then using linear aggregation to aggregate up the vintage capitals into
an aggregate capital, index number theory was used to aggregate up over vintages. In other words,
each vintage capital was regarded as a separate input and superlative indexes were used to do the
aggregation over vintages.  Three different depreciation assumptions were considered: (1)
declining balance or geometric depreciation; (2) one hoss shay  and (3) straight line depreciation.
It turns out that in the first two models, the sequence of vintage rental prices varies in strict
proportion so Hicks’ Aggregation Theorem applies and superlative indexes are not needed to
aggregate over vintages. However, in the case of straight line depreciation, it is necessary to use a
superlative index to perform the aggregation over vintages.  The remainder of the paper illustrated
what difference it made to Canadian productivity numbers.

Journal of Economic Literature Classification Numbers: C43, C82, D24, D92, E22, G12, M4,
O47, O51, Q24

Keywords: capital, depreciation, Canadian productivity, user cost of capital, vintage capital
stocks
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PROGRESS IN MEASURING THE PRICE AND QUANTITY OF CAPITAL

By W. Erwin Diewert and Denis A. Lawrence1

1. Introduction

The fundamentals of capital measurement for production function and productivity estimation
were laid out by Zvi Griliches (1963) over 35 years ago.  This theory, which lays out the
relationships between asset prices, rental prices, depreciation and the relative efficiencies of
vintages of durable inputs, has been refined and extended by a large number of authors, including
Jorgenson and Griliches (1967)(1972), Christensen and Jorgenson (1969)(1970), Jorgenson
(1973)(1989)(1996), Diewert (1980), Hulten and Wykoff (1981a)(1981b)(1996), Hulten
(1990)(1996) and Triplett (1996).  Unfortunately, the United Nations (1993) System of National
Accounts has not yet incorporated this well established theory into its production accounts,
partly because the SNA regards interest as an income transfer rather than being a productive
reward for postponing consumption and partly because capital gains are also regarded as being
unproductive.2 Thus from some points of view, there has been little official progress in
measuring the price and quantity of capital in a form that would be suitable for production and
productivity accounts.

However, the above paragraph presents a picture that is a bit too gloomy for two reasons:

• Several statistical agencies, starting with the U.S. Bureau of Labor Statistics3, have introduced
productivity accounts that are based on user costs4;

• An international group of statistical agencies has set up a Working Group (the Canberra
Group) under the direction of Derek Blades of the OECD whose mandate is to construct a
handbook of capital measurement that would be used by national income accountants around

                                    
1Department of Economics, University of British Columbia, Vancouver, Canada and NBER and Tasman Asia
Pacific, Canberra, Australia.  The first author thanks the Canadian Donner Foundation for financial support and
Michael Harper, Charles Hulten and Dale Jorgenson for helpful comments on an earlier draft.  The first author would
also like to dedicate this paper to Zvi Griliches who first introduced him to the difficult problems involved in
economic measurement.
2 To be fair to national income accountants, defining a coherent set of user costs or rental prices for capital stock
components is not a trivial job.  As we shall see later in this paper, there are many possible variants for user costs
and it is difficult to select any single version.  Diewert (1980; 470-486) discusses many of these variants.
3 For descriptions of the BLS multifactor productivity accounts, see Bureau of Labor Statistics (1983) and Dean and
Harper (1998).
4 Statistics Canada and the Australian Bureau of Statistics also have multifactor productivity measurement
programs.
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the world.  Hopefully, the user cost of capital will make its national income accounting debut
in this document.

After delivering the above brief progress report, is there anything new that we can say in the
remainder of the paper?  We believe that there is.  In the remainder of the paper, we flesh out a
suggestion that dates back to Griliches:

 “Ideally, the available flow of services would be measured by machine-hours or
machine-years.  In a world of many different machines we would weight the
different machine-hours by their respective rents.  Such a measure would
approximate most closely the flow of productive services from a given stock of
capital and would be on par with man-hours as a measure of labor input.”
Zvi Griliches (1963), reprinted (1988; 127).

Following up on Griliches’ suggestion, we will treat each vintage of a particular capital good as a
separate vintage specific input into production and construct a separate rental price for that
vintage.  Then we will form a capital aggregate over vintages by using a superlative index number
formula5 that does not restrict a priori the substitution possibilities between the various vintages
of that type of capital.6  Thus instead of aggregating over vintages using an assumed pattern of
relative efficiencies, we use the theory of exact index numbers to do the aggregation.  However, as
we shall see, the use of Hicks’ (1946; 312-313) Aggregation Theorem (applied in the producer
context) leads to the emergence of some familiar capital aggregates in the end.

In the following section, we lay out the basic relationships between depreciation (the decline in
value of an asset due to age) and the asset and rental prices of each vintage of a durable input.  We
look at the relationships between each of these three profiles of prices (or depreciation amounts)
as functions of age, assuming that we can observe a cross section of asset prices by age of asset.
It turns out that any one of these profiles determines the other two profiles.

In sections 3,4 and 5, we specialize the general model of section 2 to work out the implications of
three specific models of depreciation or relative efficiency that have been proposed in the
literature.  In section 3, we consider the declining balance or geometric depreciation model while
in section 5, we consider the straight line depreciation model.  In section 4, we consider the one
hoss shay model of depreciation which assumes that the efficiency and hence rental price of each
vintage of the capital good is constant over time (until the good is discarded as completely worn
out after N periods).  This model is sometimes known as the gross capital stock model.  Note
that these models all assume that the real rate of interest r is constant at any point in time.

                                    
5 See Diewert (1976)(1978a) for material on superlative index number formulae.
6 We implicitly assume that deterioration and depreciation of the various vintages do not depend on use; only on
the age of the input.
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The models derived in sections 3-5 imply different measures for the aggregate service flow of
capital.  Hence, the use of these different capital flow measures will lead to different measures of
total factor productivity growth.  In sections 6-8, we use Canadian data for the private business
sector for the years 1962-1996 to construct alternative capital flows and productivity measures
using the alternative capital concepts developed in sections 3-5.  Thus we ask the question: does
the use of these alternative capital measures empirically matter for the purpose of productivity
measurement?7 In sections 6-8, we also address some of the complications associated with the
measurement of real interest rates when rates of inflation for asset prices differ.

Section 9 offers some concluding comments while the Data Appendix briefly describes and lists
the Canadian data that we use.

2. The Relationship between Asset Prices, Depreciation and Rental Prices

Consider a new durable input that is purchased at the beginning of a period at the price P0.  At
this same point in time, older vintages of this same input can be purchased at the price Pt for a
unit of the asset that is t years old, for t=1,2,…. Generally speaking, these vintage asset prices
decline as the age of the asset increases. This sequence of vintage asset prices at a particular point
in time,

(1) P0 , P1 ,…, Pt ,…

is called the asset price profile  of the durable input.

Depreciation for a unit of a new asset, D0, is defined as the difference in the price of a new asset
and an asset that is one year old, P0  - P1 . In general, depreciation for an asset that is t years old
is defined as

(2) Dt  = Pt  - Pt+1                                                    ; t = 0,1,2,….

Obviously, given the asset price profile, the profile of depreciation allowances, Dt , can be
calculated using equations (2). Conversely, given the sequence of depreciation allowances, the
asset price profile can be calculated using the following equations:

(3) Pt  = Dt  + Dt+1  + Dt+2   + ….                            ; t = 0,1,2,…..

In addition to the asset price sequence {Pt} and the depreciation sequence {Dt}, there is a
sequence of rental payments to the vintage assets or the sequence of vintage user costs, {U t},

                                    
7 Thus our study is similar in some respects to the empirical investigation of alternative rental prices made by
Harper, Berndt and Wood (1989).
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that an asset of age t can earn during the current period, t=0,1,2,…. If the real interest rate in the
current period is r, then economic theory suggests that the price of a new asset, P0 , should be
equal to the rental for a new asset, U0, plus the discounted stream of rentals or user costs that
older vintage assets can earn. In general, the price of an age t asset , Pt, should be approximately
equal to a discounted stream of rental revenues that the asset can be expected to earn for the
remaining periods of its useful life:

(4) Pt = Ut + (1+r)-1Ut+1 + (1+r)-2 Ut+2  + ….              ; t = 0,1,2,….

Equations (4) can be manipulated (use the equations for t and t+1) to give us a formula for Ut in
terms of the asset prices:

(5) Pt = Ut + (1+r)-1Pt+1                                               ; t = 0,1,2,….

Equations (5) then yield the following formula for the user cost of a t year old asset:

(6) Ut = Pt  − (1+r)-1Pt+1                                              ; t = 0,1,2,….

The interpretation of (6) is clear: the net cost of buying an asset that is t years old and using it for
one period and then selling it at the end of the period is equal to its purchase price Pt  less the
discounted end of the period price for the asset when it is one year older, (1+r)-1Pt+1 . User cost
formulae similar to (6) date back to the economist Walras (1954; 269) and the early industrial
engineer Church (1901; 907-908). In more recent times, user cost formulae adjusted for income
taxes have been derived by Jorgenson (1963) (1989) and by Hall and Jorgenson (1967). A simple
method for deriving these tax adjusted user costs may be found in Diewert (1980; 471) (1992;
194).

The above equations show that the sequence of vintage asset prices {Pt}, the sequence of vintage
depreciation allowances {Dt}, and the sequence of vintage rental prices or user costs  {Ut},
cannot be specified independently; given any one of these sequences, the other two sequences are
completely determined.8 This is an important point since capital stock researchers usually
specify a pattern of depreciation rates and these alternative depreciation assumptions completely
determine the sequence of vintage specific rental prices which should be used as weights when
aggregating across vintages to form an aggregate capital stock component.

                                    
8 This important point was recognized by Hulten (1990; 129) as the following quotation indicates: “One cannot
select an efficiency pattern independently of the depreciation pattern and maintain the assumption of competitive
equilibrium at the same time.  And, one cannot arbitrarily select a depreciation pattern independently from the
observed pattern of vintage asset prices Pt

s (suggesting a strategy for measuring depreciation and efficiency).  Thus,
for example, the practice of using a straight line efficiency pattern in the perpetual inventory equation in general
commits the user to a non straight line pattern of economic depreciation.”  Hulten’s efficiency pattern is our user
cost profile.
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In what follows, we consider three alternative patterns of depreciation: (a) declining balance or
exponential depreciation (the amount of depreciation for each vintage is assumed to be a constant
fraction of the depreciated asset value at the beginning of the period); (b) one hoss shay
depreciation (or light bulb depreciation) where the efficiency of the asset is assumed to be
constant until it reaches the end of its life when it completely collapses and (c) straight line
depreciation where the amount of depreciation is assumed to be a constant amount for each
vintage until the asset reaches the end of its life.

3.  The Declining Balance Depreciation Model

In terms of the sequence of vintage asset prices, this model can be specified as follows:

(7) Pt  = (1−δ)t P0                                                                ;  t = 1,2,….

where δ is a positive number between 0 and 1 (the constant depreciation rate). Thus from (7), we
see that the vintage asset price declines geometrically as the asset ages. If we substitute (7) into
(2), we see that:

(8) Dt = [1 – (1−δ)](1−δ)t P0   = δ(1−δ)t P0  =  δ Pt               ; t = 0,1,2, ….

i.e., depreciation for a t year old asset is equal to the constant depreciation rate δ times the
vintage asset price at the start of the period, Pt. Note that the second equality in (8) tells us that
Dt declines geometrically as t increases.

Substituting (7) into (6) yields the following sequence of vintage rental prices:

(9) Ut = (1−δ)t P0 −  (1+r)-1(1−δ)t+1P0    =  (1−δ)t(1+r)-1[r + δ] P0       ; t = 0,1,2,…

Thus the rental price for a new asset is (set t = 0 in the above equation):

(10) U0 = (1+r)-1[r + δ] P0  .

Now substitute (10) into (9) and we find that the rental price for a t year old asset is a
geometrically declining fraction of the rental price for a new asset:

(11) Ut = (1−δ)t U0                                         ; t = 1,2,….

The above equations imply that the vintage specific asset rental prices vary in fixed proportion
over time. This means that we can apply Hicks’ (1946; 312-313) Aggregation Theorem to
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aggregate the capital stock components across vintages.9 If I0 is the new investment in the asset
in the current period and It is the vintage investment in the asset that occurred t periods ago for t
=1,2,…., then the current period value of the particular capital stock component under
consideration, aggregated over all vintages is:

(12) U0I0  +  U1I1  +  ….  = U0[I0  +  (1−δ) I1  + (1−δ)2 I2  +  …].

Thus (12) gives us the value of capital services over all vintages of the capital stock component
under consideration. It can be seen that this value flow can be decomposed into a price term U0

which is the user cost for a new unit of the durable input, times an aggregated over vintages
capital stock K defined as

(13) K = I0  +  (1−δ) I1  + (1−δ)2 I2  +  …

This is the standard net capital stock model that has been used extensively by Jorgenson and his
associates; see Jorgenson (1963) (1983) (1984) Jorgenson and Griliches (1967) (1972) and
Christensen and Jorgenson (1969).

Note that in this model of depreciation, it is not necessary to use a superlative index number
formula to aggregate over vintages in this model since its use would just reproduce the
decomposition into price and quantity components that is on the right hand side of (12); i.e., in
this model, Hicks’ Aggregation Theorem makes the use of a superlative formula superfluous.

We turn now to the one hoss shay model of depreciation.

4. The Gross Capital Stock Model

In this model, it is assumed that the efficiency of the asset remains constant over its life of say N
years and then the asset becomes worthless. This means that the rental price for the asset
remains constant over its useful life; i.e., we make the following assumption:

(14) Ut = U0     for t = 1,2, …,N−1     and   Ut = 0    for  t = N,N+1,N+2,….

We need a formula for the user cost of a new unit of the asset, U0. Substituting (14) into equation
(4) when t = 0 yields:

         P0 = U0 + (1+r)-1U0 + (1+r)-2U0 + … + (1+r)-N+1U0

(15)      = U0 (1+r) r -1[1 – (1+r)-N ].

                                    
9 Hicks formulated his aggregation theorem in the context of consumer theory but his arguments can be adapted to
the producer context; see Diewert (1978b)
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 Now use (15) to solve for U0 in terms of P0 :
 

(16) U0  = P0 r (1+r)-1 [1 – (1+r)-N]-1 .
 

 The capital aggregate in this model is simply the sum of the current period investment I0 plus the
vintage investments going back N – 1 periods:
 

(17) K = I0 + I1 + … + IN-1  .

The corresponding price for this capital aggregate is U0 defined by (16). Because the rental price
is constant across vintages, we can again apply Hicks’ Aggregation Theorem to aggregate across
vintages; i.e., we do not have to use a superlative index number formula to aggregate over vintages
in this model since the user costs of the vintages will vary in strict proportion over time. This is
the standard gross capital stock model that is used by the OECD and many other researchers.
The only point that is not generally known is that there is a definite rental price that can be
associated with this gross capital stock and the corresponding quantity aggregate is consistent
with Hicks’ Aggregation Theorem.

For comparison purposes, it may be useful to have explicit formulae for the profile of vintage
asset prices Pt and the vintage depreciation amounts Dt . In terms of U0, these formulae are:

(18)       Pt = U0 (1+r) r -1[1 – (1+r)-(N-t)]    for  t = 0,1,2,…,N−1  and
              Pt = 0   for  t = N,N+1,…            and

(19)       Dt = U0 (1+r)1−N+t                         for  t = 0,1,2,…,N−1 and
              Dt = 0   for t = N,N+1,….

Of course, Pt declines as t increases (for t less than N) but Dt increases as t increases (for t less
than N), which is quite different from the pattern of depreciation in the declining balance model
where depreciation decreases as t increases.

It is important to use the above gross capital stock user costs as price weights when aggregating
over different components of a gross capital stock in order to form an aggregate flow of services
that can be attributed to the capital stock in any period. Many researchers who construct gross
capital stocks for productivity measurement purposes use formula (17) above to construct gross
capital stock components but then when they construct an overall capital aggregate, they use the
stock prices P0  as price weights instead of the user costs U0  defined by (16).  This will typically
lead to an aggregate capital stock which grows too slowly since structures (which usually grow
more slowly than machinery and equipment components) are given an inappropriately large
weight when stock prices are used in place of user costs as price weights; see Jorgenson and
Griliches (1972) for additional material on this point.
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We turn now to our final alternative model of depreciation.

5.  The Straight Line Depreciation Model

In this model of depreciation, the depreciation for an asset which is t years old is set equal to a
constant fraction of the value of a new asset P0 over the life of the asset; i.e., we have

(20) Dt  = (1/N) P0    for   t = 0,1,2,…, N−1  and  Dt = 0   for t = N,N+1,N+2,….

where N is the useful life of  a new asset. Using (3) and (20), we can deduce that the sequence of
vintage asset prices is

(21) Pt = [1 – t/N]P0  for  t = 0,1,2,…, N−1  and  Pt = 0   for t = N,N+1,N+2,….

Using (6) and (21), we can calculate the sequence of vintage user costs:

(22)  Ut = [1 – t/N]P0 − (1+r)-1 [1 – (t+1)/N]P0   

(23)      = (1+r)-1[r + N-1 – tN -1r]P0                   for  t = 0,1,…,N−1 and
       Ut  = 0                                                     for t = N,N+1,…

Recall that in the declining balance model, depreciation decreased as the asset aged (see (8) above)
and in the gross capital stock model, depreciation increased as the asset aged (see (19) above). In
the present model, depreciation is constant over the useful life of the asset. Also recall that in the
declining balance model, the vintage asset prices decreased as the asset aged (see (7) above) and in
the gross capital stock model, the vintage asset prices also decreased as the asset aged (see (18)
above). In the present model, the vintage asset prices also decrease over the useful life of the
asset (see (21) above). Finally, recall that in the declining balance model, the vintage rental prices
decreased as the asset aged (see (11) above) and in the gross capital stock model, the vintage
rental prices remained constant as the asset aged (see (14) above). In the present model, the
vintage asset prices also decrease over the useful life of the asset (see (23) above); i.e., Ut

decreases from (1+r)-1[r + (1/N)]P0 when t = 0 to  (1/N)P0 when t = N−1.

How can we empirically distinguish between the three depreciation models?  We know of only
three methods for doing this: (a) engineering studies; (b) regression models, which utilize profiles
of used asset prices10; and (c) regression models where production functions or profit functions

                                    
10 See Beidelman (1973)(1976), Hulten and Wykoff (1981a)(1981b) and Wykoff (1989) for studies of this type.  An
extensive literature review of the empirical literature on depreciation rate estimation can be found in Jorgenson
(1996).
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are estimated where vintage investments appear as independent inputs.11  In practice, it is
difficult to distinguish between the declining balance and straight line models of depreciation since
their price and depreciation profiles are qualitatively similar.

We now encounter a problem with the straight line depreciation model that we did not encounter
with our first two models: the rental prices of the vintage capital stock components will no
longer vary in strict proportion over time unless the real interest rate r is constant over time.
Thus in order to form a capital services aggregate over the different vintages of capital, we can no
longer appeal to Hicks’ Aggregation Theorem to form the aggregate using minimal assumptions
on the degree of substitutability between the different vintages.

The aggregate value of capital services over vintages is:

(24)  U0I0  +  U1I1  +  …. + UN-1IN-1 = (1+r)-1[r + (1/N)]P0 I0  + … +  (1/N)P0 IN-1 .

It can be seen that the price of a new unit of the capital stock, P0 , is a common factor in all of the
terms on the right hand side of (24); this follows from the fact that P0  is a common factor in all
of the user costs Ut defined by (23). Thus we could set the price of the aggregate equal to P0 and
define the corresponding capital services aggregate as the right hand side of (24) divided by P0 .
However, to justify this procedure, we have to assume that each vintage of the capital aggregate
is a perfect substitute for every other vintage with efficiency weights proportional to the user
costs of each vintage. The problem with this assumption is if the real interest rate is not constant,
then we are implicitly assuming that efficiency factors are changing over time in accordance with
real interest rate changes. This is a standard assumption in capital theory but it is not necessary to
make this restrictive assumption. Instead, we can use standard index number theory and use a
superlative index number formula (see Diewert (1976) (1978b)) to aggregate the N vintage capital
stock components: in each period, the quantities are I0, I1,…, IN-1 and the corresponding prices
are the user costs  U0, U1,…, UN-1 defined by (23). If we use the Fisher (1922) Ideal index, then
this formula is consistent with the vintage specific assets being perfect substitutes but the
formula is also consistent with more flexible aggregator functions.

We conclude these theoretical sections of our paper by noting that there was no need to use an
index number formula to aggregate over vintages in the first two depreciation models considered
above since under the assumptions of these models, the vintage rental prices will vary in strict
proportion over time. Thus if we did use an index number formula that satisfied the
proportionality test, then the resulting aggregates would be the same as the aggregates that were
exhibited in sections 3 and 4 above. Most models of depreciation do not have vintage rental
prices that vary in strict proportion over time so those two models are rather special. More
complicated (but more flexible) models of depreciation are considered in Hulten and Wykoff

                                    
11 For examples of this type of study, see Epstein and Denny (1980), Pakes and Griliches (1984) and Nadiri and
Prucha (1996).
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(1981a).12  The aggregation of the vintage capital stocks that correspond to these more
complicated models of depreciation could also be accomplished using a superlative index number
formula.

We turn now to an empirical illustration of the above aggregation procedures using Canadian data
for the market sector of the economy for the years 1962-1996.

6.  Construction of the Alternative Reproducible Capital Stocks for Canada

From the Data Appendix below, we can obtain beginning of the year net capital stocks for
nonresidential structures, KNS, and machinery and equipment, KME, in Canada for 1962 and 1997.
We also have data on annual investments for these two capital stock components, INS and IME, for
the years 1962-1996.  Adapting equation (13) in section 3 above, it can be seen that if the
declining balance model of depreciation is the correct one for Canada, then the 1997 beginning of
the year capital stock for each of the above two components should be related to the
corresponding 1962 stock and the annual investments as follows:

(25) K1997 = (1−δ)35 K1962 + (1−δ)34 I1962
  + (1−δ)33 I1963 +…+(1−δ) I1995 + I1996

 

 where δ is the constant geometric depreciation rate that applies to the capital stock component.
Substituting the data listed in the Data Appendix into (25) for the two reproducible capital stock
components yields an estimated depreciation rate of δNS = .058623 for nonresidential structures

and δME = .15278 for machinery and equipment.  Once these depreciation rates have been
determined, the year to year capital stocks can be constructed (starting at t = 1962) using the
following equation:
 

(26) Kt+1 = (1−δ) Kt + It.
 

 The resulting beginning of the year declining balance capital stock estimates for nonresidential
construction may be found in the second column of Table 1 below.  However, for machinery and
equipment, when we compared the stocks generated by equation (26) to the net stocks tabled in
the Data Appendix, we found that the two series started to diverge around 1991.  Hence we used
variants of equation (25) above to fit two separate geometric depreciation rates for machinery and
equipment; the first rate applies to the 30 years 1962-91 and is δME = .12172 and the second rate

applies to the 6 years 1991-1997 and is δME = .16394.  Using these two depreciation rates in
equation (26) led to the beginning of the year declining balance capital stock estimates for
machinery and equipment that are found in the second column of Table 2 below.

                                    
12 The Bureau of Labor Statistics (1983) has also adopted a more complicated hyperbolic formula to model
depreciation,
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 We turn now to the construction of the capital stocks that correspond to the straight line
depreciation assumption.  Letting It be constant dollar investment in year t as usual, if the length
of life is N years, then the beginning of year t straight line capital stock is equal to:
 

(27) Kt = (1/N)[NIt-1 + (N−1)It-2 + (N−2)It-3 +…+(1)It-N].
 

 Our investment data begins at 1962.  In order to obtain straight line capital stocks that start at the
year 1962, we require investment data for the previous N years.  We formed an approximation to
this missing investment data by assuming that investment grew in the pre 1962 period at the
same rate as the net capital stock grew in the 1962-1997 period.  The net capital stock for
nonresidential structures, KNS in the Data Appendix, grew at the annual (geometric) rate of
1.033347 for the 1962-1997 period while the net capital stock for machinery and equipment,
KME, grew at the annual (geometric) rate of 1.060053.  Thus for a given length of life N say for
machinery and equipment capital, we took the 1961 investment for machinery and equipment to
be the unknown amount IME

1961, and then defined the investment for 1960 to be IME
1961/1.060053,

the investment for 1959 to be IME
1961/(1.060053)2, etc.  We then substituted these values into

(27) with t = 1962 and solved the resulting equation for IME
1961, assuming that KME

1962 =
$17,983.7 billion dollars, the starting value taken from the net capital stock listed in the Data
Appendix.  We could construct the straight line capital stock for machinery and equipment using
our assumed life N, the artificial pre 1962 investment data and the actual post 1962 investment
data using formula (27).  We then repeated this procedure for alternative values for N.  We finally
picked the N, which led to the straight line capital stock which most closely approximated the
net capital stock listed in the Data Appendix.  For machinery and equipment, the best fitting
length of life N was 12 years while for nonresidential structures, the best length of life was 29
years.  These straight line capital stocks are reported in column 3 of Tables 1 and 2.
 

 Table 1. Alternative Capital Stocks for Nonresidential Structures in Canada
 Year  Declining Balance  Straight Line  Gross
 1962  30006.6  30006.6  50410.1
 1963  30807.5  30828.3  51912.2
 1964  31649.0  31685.7  53466.5
 1965  32854.3  32902.7  55397.6
 1966  34266.5  34330.7  57568.5
 1967  36088.6  36176.4  60193.1
 1968  37604.7  37732.6  62578.4
 1969  39001.9  39176.3  64892.1
 1970  40321.1  40544.3  67166.7
 1971  41912.9  42183.7  69746.9
 1972  43536.1  43858.8  72405.9
 1973  45047.2  45425.4  75000.6
 1974  46790.4  47223.2  77867.1
 1975  48699.9  49190.6  80951.4
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 1976  51106.5  51660.7  84592.5
 1977  53250.5  53883.7  88057.9
 1978  55579.4  56297.8  91778.2
 1979  57913.1  58724.9  95582.1
 1980  60829.7  61740.6  100046.0
 1981  64294.4  65321.5  105167.5
 1982  68091.1  69260.8  110760.3
 1983  70977.3  72319.3  115599.4
 1984  73125.6  74642.4  119801.9
 1985  75081.2  76753.7  123867.4
 1986  77236.7  79039.4  128174.8
 1987  78886.4  80797.0  132027.7
 1988  80678.2  82660.8  136042.0
 1989  83016.6  85037.6  140627.7
 1990  85435.0  87473.4  145347.7
 1991  87728.5  89763.4  149999.2
 1992  89651.3  91656.7  154504.9
 1993  90358.7  92291.9  157820.4
 1994  91054.5  92842.7  160752.6
 1995  92237.8  93820.6  163935.5
 1996  93303.7  94640.8  166577.8
 1997  94586.6  95649.3  169698.6
 

 

 Table 2. Alternative Capital Stocks for Machinery and Equipment in Canada
 Year  Declining Balance  Straight Line  Gross
 1962  17983.7  17983.7  30017.3
 1963  18162.7  17850.3  30606.6
 1964  18522.0  17869.8  31291.0
 1965  19291.3  18286.0  32316.0
 1966  20494.5  19144.4  33748.5
 1967  22229.6  20561.7  35732.0
 1968  23845.6  21905.9  37672.9
 1969  24966.0  22789.3  39171.7
 1970  26331.1  23929.0  40900.1
 1971  27615.1  25009.7  42552.9
 1972  28876.9  26086.8  44169.5
 1973  30361.5  27405.5  45981.9
 1974  32785.0  29692.8  48722.4
 1975  35687.4  32525.6  53247.5
 1976  38628.9  35373.7  57962.8
 1977  41530.2  38146.7  62542.3
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 1978  44060.1  40519.8  66575.8
 1979  46904.7  43179.5  70553.8
 1980  50746.0  46850.6  75782.5
 1981  56096.6  52062.8  83287.1
 1982  63204.7  59058.4  92819.3
 1983  67262.2  63074.3  100081.1
 1984  70606.0  66265.2  106988.9
 1985  74318.5  69656.2  114296.2
 1986  79447.3  74306.4  122352.0
 1987  85489.7  79823.3  131171.7
 1988  93219.6  87028.0  142022.1
 1989  103385.1  96705.1  155931.1
 1990  113970.6  106880.4  171515.8
 1991  122239.5  114729.0  185449.6
 1992  124460.9  121535.7  198159.9
 1993  126893.6  127858.7  209468.7
 1994  127816.8  132128.5  217258.1
 1995  130582.7  137743.2  229226.9
 1996  134305.4  143770.9  242825.8
 1997  138467.1  149714.6  256698.2
 

 

 Once the “best” length of lives N for nonresidential structures (29 years) and machinery and
equipment (12 years) have been determined, these lives can be used (along with our pre 1962
artificial investment data and our post 1962 actual investment data) to construct the one hoss
shay or gross capital stocks using the following formula:
 

(25) Kt = It-1 + It-2 + It-3 +…+It-N.

These gross capital stocks are reported in column 4 of Tables 1 and 2.

In the following sections, we use the above capital stock and investment information to construct
alternative aggregate capital services measures along with total primary input and productivity
measures for Canada.

6. Alternative Productivity Measures for Canada Using Declining Balance Depreciation

From the Data Appendix, we have estimates for the price and quantity of market sector output
in Canada for the years 1962-1996, PY and QY; for the price and quantity of market sector labour
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services, PL and QL; for the price and quantity of business and agricultural land, PBAL and KBAL;
and for the price and quantity of beginning of the year market sector inventory stocks, PIS and
QIS.  We also have estimates of the operating surplus for the market sector, OS, which is equal to
the value of output, PYQY , less the value of labour input, PLQL.  From the previous section, we
have estimates of the beginning of the year declining balance capital stocks for nonresidential
structures KNS and for machinery and equipment KME.  The corresponding prices, PNS and PME,
are listed in the Data Appendix.  Thus we have assembled all of the ingredients that are necessary
to form the declining balance user costs for each of our four durable inputs (nonresidential
structures, machinery and equipment, land and inventories) that were defined by (10) in section 3
above.  The only ingredient that is missing is an appropriate real interest rate, r.

For each year, we determined r by setting the operating surplus equal to the sum of the products
of each stock times its user cost.  This leads to a linear equation in r of the following form for
each period:

(25) (1+r)OS = (r+δNS)PNSKNS + (r+δME)PMEKME + rPBALKBAL + rPISKIS.
 

 Once the interest rate r has been determined for each period, then the declining balance user costs
for each of the four assets can be calculated, which are of the following form:
 

(26) (r+δNS)PNS/(1+r),  (r+δME)PME/(1+r),  rPBAL/(1+r), rPIS/(1+r).
 

 Finally, the above four user costs can be combined with the corresponding capital stock
components, KNS, KME, KBAL and KIS, using chain Fisher ideal indexes to form declining balance
capital price and quantity aggregates, say PK(1) and K(1).13  The resulting aggregate price of
capital services is graphed in Figure 1 below.  We also combined the four rental prices and
quantities of capital with the price and quantity of labour, PL and QL, to form a primary input
aggregate, QX(1), (again using a chain Fisher ideal quantity index).  Once this aggregate input
quantity index QX(1) was determined, we used our aggregate output index QY along with the
input index in order to define our first total factor productivity index, TFP(1):
 

(27) TFP(1) ≡ QY/QX(1).
 

 TFP(1) is graphed in Figure 2 below.
 

                                    
 13 For all of the capital models reported in this paper, the aggregate price of capital services PK times the
corresponding capital services aggregate K will equal the operating surplus OS.
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 Figure 1: Alternative Declining Balance Aggregate Capital Services Prices
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 Since in many productivity studies (including ours), land is held fixed, it is often neglected as an
input into production.  However, even though the quantity of land is fixed, its price is not and so
neglecting land can have a substantial effect on aggregate input growth.  In order to determine this
effect empirically, we recomputed the interest rate r for each period by using a new version of
equation (29) above where the term rPBALKBAL on the right hand side of (29) was omitted.  This
omission of land has a substantial effect on the real interest rates: the average r increased from
5.933% to 7.808%.   Once the new r’s were determined, the three nonland user costs of the form
(10) were computed.  Then these three user costs were combined with the corresponding capital
stock components, KNS, KME, and KIS, using chain Fisher ideal indexes to form new declining
balance capital price and quantity aggregates, say PK(2) and K(2).  The resulting aggregate price
of capital services PK(2) is graphed in Figure 1.  We also combine the three new rental prices and
quantities of capital with the price and quantity of labour, PL and QL, to form a new primary
input aggregate, QX(2), (again using a chain Fisher ideal quantity index).  Once this aggregate
input quantity index QX(2) was determined, we used our aggregate output index QY along with
the input index in order to define our second total factor productivity index, TFP(2):
 

(28) TFP(2) ≡ QY/QX(2).
 

 This second declining balance TFP measure (which omits land from the list of primary inputs) is
graphed in Figure 2.
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 Figure 2: Alternative Declining Balance Productivity Measures
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 Many productivity studies also neglect the role of inventories as durable inputs into production.
To determine the effects of omitting inventories on TFP in Canada, we recomputed the interest
rate r for each period by using a new version of equation (29) above where both the land and
inventory terms on the right hand side of (29) were omitted.  This new omission of inventories
has a further substantial effect on the real interest rates: the average r increased from 7.808%
(with land omitted) to 10.067% (with land and inventories omitted).   Once the new r’s were
determined, the two reproducible capital user costs of the form (10) were computed.  Then these
two user costs were combined with the corresponding capital stock components, KNS and KME,
using chain Fisher ideal indexes to form new declining balance capital price and quantity
aggregates, say PK(3) and K(3).  The resulting aggregate price of capital services PK(3) is graphed
in Figure 1.  We also combine the two new rental prices and quantities of capital with the price
and quantity of labour, PL and QL, to form a new primary input aggregate, QX(3), (again using a
chain Fisher ideal quantity index).  Once this aggregate input quantity index QX(3) was
determined, we used our aggregate output index QY along with the input index in order to define
our second total factor productivity index, TFP(3):
 

(29) TFP(3) ≡ QY/QX(3).

This third declining balance TFP measure (which omits land and inventories from the list of
primary inputs) is graphed in Figure 2.

Once a TFPt measure has been determined for year t, we can define the total factor productivity
growth factor ∆TFPt and the corresponding TFP growth rate gt for year t as follows:

(34)  ∆TFPt ≡ TFPt / TFP t-1  ≡ (1 + gt).
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The TFP growth factors for the years 1963-1996 for each of the three declining balance TFP
concepts that we have considered thus far are listed in the final table of the Data Appendix.
However, the arithmetic averages of the three TFP growth rates for the 34 years 1963-1996,
gt(1), gt(2), and gt(3), are listed in row 1 of Table 3 below.

Table 3.  Averages of TFP Growth Rates for Declining Balance Models (%)
g(1) g(2) g(3) g(4) g(5) g(6)

1963-96 0.68 0.58 0.55 0.57 0.54 0.52
1963-73 1.08 0.97 0.97 0.98 0.96 0.96
1974-91 0.18 0.05 -0.01 0.03 0.00 -0.06
1992-96 1.63 1.60 1.62 1.61 1.60 1.62

average r or R 5.93 7.81 10.07 11.53 12.10 14.41
growth of K 3.89 4.36 4.51 4.42 4.52 4.63

Looking at column 1 of Table 3, it can be seen that TFP growth over the entire 34 years, 1963-
1996 averaged .68% per year.  However, this average growth rate conceals a considerable amount
of variation within subperiods.  For the 11 years before the first OPEC oil crisis, 1963-1973, the
market sector of the Canadian economy delivered an average growth in TFP of 1.08% per year.
During the following 18 years, 1974-1991, (which were characterized by high inflation, a growing
government sector and higher tax levels), average TFP growth fell to .18% per year.  After the
recession in the early 1990’s, TFP growth made a strong recovery, averaging 1.63% per year
during the 5 years 1992-1996.  The final two rows of Table 3 list the average interest rate that the
capital model generated (which was 5.93% for our first declining balance model) along with the
(geometric) average growth rate in real capital services (which was 3.89% per year for model 1).  

When land is dropped as a factor of production (see column 2 of Table 3), the average interest
rate increased to 7.89% and the average growth rate for capital services increased from 3.89% to
4.36% per year.  This is to be expected: excluding land as an input (which does not grow over
time) increases the overall rate of input growth and hence decreases productivity growth.  Thus
the average rate of TFP growth for Model 2 (which excluded land) has decreased to .58% per
year from the Model 1 average rate of .68% per year—a drop of .1% per year.  

Column 3 of Table 3 reports what happens when both inventories and land are dropped as
factors of production.  Since inventories have grown much more slowly than structures and
machinery and equipment, dropping inventories further increases the average growth rate for real
capital services, from 4.36% to 4.51% per year and further decreases the average TFP growth
rate from .58% to .55% per year.  However, the drop in the average TFP growth rate for the
“lost” years, 1974-91, is even greater, from .05% to −.01% per year.  Note that the average TFP
growth rates for the recent “good” years, 1992-1996, do not differ much across the three
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declining balance capital models that we have considered thus far; the average annual TFP growth
rates were 1.63%, 1.60% and 1.62% respectively.

The above 3 declining balance capital models were based on the theory outlined in sections 2 and
3 above.  The analysis in these sections neglected the inflation problem or, more accurately, the
above analysis implicitly assumed that asset inflation rates were identical across assets.  We now
want to relax this assumption and allow for differential inflation rates across assets.

The analysis in section 2 derived the relationships between vintage asset prices, depreciation and
vintage user costs at one point in time, assuming no inflation.  Hence the r which appeared in
equations (4) to (6) can be interpreted as a real interest rate.  We now want to generalize the
fundamental user cost formula (6) to allow for asset inflation.  We shall now use the superscript t
to denote the time period and the subscript s to denote the vintage or age of the asset under
consideration.  Thus s = 0,1,2,… means that the asset is new (0 years old), 1 year old, 2 years
old, etc.  Let Ps

t denote the beginning of year t price of a capital stock component that is s years
old and let Rt be the year t nominal interest rate.  Then the year t inflation adjusted user cost for
an s year old capital stock component, Us

t, is defined as the beginning of year t purchase cost Ps
t

less the discounted value of the asset one year later, Ps+1
t+1:

(35)  Us
t ≡ Ps

t – (1+Rt)-1 Ps+1
t+1       ; s = 0,1,2,…

We now make the simplifying assumption that the year t+1 profile of vintage asset prices Ps
t+1 is

equal to the year t profile Ps
t times one plus the year t inflation rate for a new asset, (1 + it); ie,

we assume that:

(36) Ps
t+1 = Ps

t (1 + it)

where the year t new asset inflation rate it is defined as

(37)  1 + it ≡ P0
t+1/P0

t .

Substituting (36) into (35) leads to the following formula for the period t inflation adjusted user
cost of an s year old asset:

(38) Us
t = Ps

t – (1+Rt)-1Ps+1
t (1+it).

 

 The new user cost formula (38) reduces to our old formula (6) if the year t nominal interest rate
Rt is related to the year t real rate rt by the following Fisher effect equation:
 

(39) 1+Rt = (1+rt)(1+it).
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Substitution of (39) into (38) yields our old user cost formula (6) using our new notation.  Thus
is all asset inflation rates are assumed to be the same, our new user cost formula (38) reduces to
our old formula (6).  However, in reality, inflation rates differ markedly across assets.  Hence,
from the viewpoint of evaluating the ex post performance of a business (or of the entire market
sector), it is useful to take ex post asset inflation rates into account.14  If a business invests in an
asset that has an above normal appreciation, then these asset capital gains should be counted as
an intertemporally productive transfer of resources from the beginning of the accounting period
to the end; i.e., the capital gains that were made on the asset should be offset against other asset
costs.  Thus in the remainder of this section, we use the inflation adjusted user costs defined by
(38) in place of our earlier no capital gains user costs of the form (6).

The profile of year t vintage asset prices in the declining balance model of depreciation will still
have the form given by (7).  Using our new notation, (7) may be rewritten as:

(40)  Ps
t = (1−δ)s P0

t    ;    s = 0,1,2,…

Substituting (40) into (38) yields the following formula for the year t sequence of vintage
inflation adjusted user costs:

(41) Us
t ≡ (1−δ)s P0

t – (1+Rt)-1(1−δ)s+1 P0
t (1+it)

                =  (1−δ)s (1+Rt)-1 [Rt−it +δ(1+it)]P0
t

                =  (1−δ)s U0
t                                           ;   s = 0,1,2,…

 

 where the year t declining balance inflation adjusted user cost for a new asset is defined as
 

(42) U0
t ≡ P0

t – (1+Rt)-1(1−δ) P0
t (1+it)

                = (1+Rt)-1 [Rt−it +δ(1+it)]P0
t .

 

 Equations (41) show that all of the period t vintage user costs, U0
t, U1

t, U2
t,…, will vary in strict

proportion to the period t user cost for a new asset, U0
t, and hence we can still apply Hicks’

Aggregation Theorem to aggregate over vintage capital stock components.  The capital stock
aggregates that we used in Models 1-3 above, KNS

t, KME
t, KBAL

t and KIS
t,  can still be used in our

new Models 4-6 that allow for differential inflation rates.  The only change is that the old user
costs defined by (30) are now replaced by inflation adjusted user costs of the form given by (42)
for each of our four capital stock components.
 

                                    
14 From other points of view, ex post user costs of the form defined by (38) may not be appropriate.  For example, if
we are attempting to model producer supply or input demand functions, then producers have to form expectations
about future asset prices; ie, expected asset inflation rates should be used in user cost formulae in this situation rather
than actual ex post inflation rates.
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 Model 4 is an inflation adjusted counterpart to Model 1.  Recall that we used equation (29) to
solve for the real interest rate r for each year.  The Model 4 counterpart to (29) is the following
equation, which determines the nominal interest rate R for a given year:
 

(43) (1+R)OS = (R−iNS+δNS[1+iNS])PNSKNS + (R−iME+δME[1+iME])PMEKME +

                              (R−iBAL)PBALKBAL +(R−iIS)PISKIS.
 

 Once the nominal interest rates Rt have been determined for each year, then the declining balance
user costs for each of the four assets can be calculated, which are of the form defined by (42).15

The above four user costs can be combined with the corresponding capital stock components,
KNS, KME, KBAL and KIS, using chain Fisher ideal indexes to form inflation adjusted declining
balance capital price and quantity aggregates, say PK(4) and K(4). The resulting aggregate price
of capital services PK(4) is graphed  in Figure 3 below, along with PK(5) (where land is dropped
as an input) and PK(6) (where both land and inventories are dropped as inputs).  We also
combined the four rental prices and quantities of capital with the price and quantity of labour, PL

and QL, to form the primary input aggregate, QX(4), (again using a chain Fisher ideal quantity
index).  Once this aggregate input quantity index QX(4) was determined, we used our aggregate
output index QY along with the input index in order to define the corresponding total factor
productivity index, TFP(4):
 

(44) TFP(4) ≡ QY/QX(4).

TFP(4) is graphed in Figure 4 below, along with TFP(5) and TFP(6).   TFP(5) and TFP(6) were
defined in an analogous fashion using inflation adjusted user costs but land was dropped as an
input for TFP(5) and both land and inventories were dropped for TFP(6).

                                    
 15 It should be noted that the resulting inflation adjusted user costs were negative for inventories in 1992 and
negative for land for the years 1971-72, 1974-77, 1979-80 and 1989-1992.  This means that for these years, these
capital inputs were actually net outputs.
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Figure 3: Alternative Inflation Adjusted Declining Balance Aggregate Capital Services
Prices
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Figure 4: Alternative Inflation Adjusted Declining Balance Productivity Measures
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Referring back to the g(4) column in Table 3 above, it can be seen the inflation adjusted declining
balance average rate of growth for real capital services was 4.42% per year which is considerably
higher than the corresponding average growth rate for real capital services for Model 1, which
was 3.89% per year.  What accounts for this major difference?  From the Data Appendix, it can
be verified that the price of land increased the most rapidly of any of the price series tabled there:
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the final land price was about 25 times the 1962 level.16  Hence, the inflation adjusted user cost
for land is generally much lower than its unadjusted counterpart, so land (which does not grow)
gets a much smaller price weighting in the inflation adjusted capital services aggregate, leading to
a faster growing capital services aggregate.  Thus the inflation adjusted declining balance Model 4
has a faster growing aggregate input than the unadjusted Model 1 and hence a lower average rate
of productivity growth (.57% per year for Model 4 compared with .68% per year for Model 1).
Since adjusting for inflation reduced the importance of land in Model 4, dropping land (Model 5)
made little difference in the average TFP growth rate; it decreased from .57% per year to .54%
per year over the entire sample period.  The further omission of inventories (Model 6) decreased
the average TFP growth rate to .52% per year.  For the “lost” years, 1974-1991, dropping land
and inventories from the inflation adjusted declining balance depreciation Model 4 had more of an
effect: the average TFP growth rate decreased from the barely positive rate of .03% per year to
the negative average rate of −.06% per year, a decline of about .1 percentage points per year.  For
the recent “good” years, 1992-1996, all 6 declining balance models generated an average TFP
growth rate of about 1.6% per year.

We turn now to our straight line depreciation models.

6. Alternative Productivity Measures for Canada Using Straight Line Depreciation

Refer back to section 6 above for information on how the vintage capital stocks Is
t for each year t

and each vintage s were constructed for each of the two reproducible capital stocks was
constructed. Using equation (22) or (23) in section 5, the straight line depreciation model year t
user cost for a reproducible capital stock component s years old can be defined as

(41) Us
t ≡ [1 – s/N] P0

t – (1+rt)-1 [1 − (s+1)/N] P0
t

                 = (1+rt)-1 [r + N-1 − sN-1r ] P0
t

 

 where N is the assumed length of life for a unit of the new asset (12 years for machinery and
equipment and 29 years for nonresidential structures) and P0

t is the year t price of a new asset.
For the nonreproducible assets, we used the same user costs in Models 7 to 9 as we used in
Models 1 to 3 in the previous section.
 

 For Model 7, for each year t, we determined the real interest rate rt by setting the operating
surplus equal to the sum of the products of each vintage stock component times its user cost.
This leads to a linear equation in rt of the following form for each year t:
 

(42) (1+rt)OS = ∑s=0
28 (rt+29-1−s29-1rt) PNSs

t INSs
t

                                    
16 Other price growth factors were: 1.8 for machinery and equipment; 4.0 for inventory stocks; 5.2 for nonresidential
structures; 5.5 for aggregate output and 8.0 for labour.
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                          + ∑s=0
11 (rt+ 12-1−s12-1rt) PMEs

t IMEs
t + rt PBAL

t
 KBAL

t + rt PIS
t
 KIS

t
 .

 

 Once the interest rate rt has been determined for each year t, then the straight line depreciation
user costs for each of the four assets can be calculated, which are of the form (45) for the two
reproducible vintage capital stock components and of the form (30) for land and inventories.
Then these vintage user costs can be combined with the corresponding vintage capital stock
components, INSs, IMes, KBAL and KIS, using chain Fisher ideal indexes to form straight line
depreciation capital price and quantity aggregates, say PK(7) and K(7). The resulting aggregate
price of capital services PK(7) is graphed in Figure 5 below.  We also combined the 43 vintage
rental prices and quantities of capital with the price and quantity of labour, PL and QL, to form
the primary input aggregate, QX(7), (using a chain Fisher ideal quantity index as usual).  Once this
aggregate input quantity index QX(7) was determined, we used our aggregate output index QY

along with the input index in order to define the total factor productivity index, TFP(7):
 

(43) TFP(7) ≡ QY/QX(7).

TFP(7) is graphed in Figure 6 below.  

Figure 5 Alternative Straight Line Depreciation Aggregate Capital Services Prices
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Models 8 and 9 are entirely analogous to Model 7 except that we dropped land from the list of
inputs in Model 8 and we dropped land and inventories from Model 9.
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Figure 6: Alternative Straight Line Depreciation Productivity Measures
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The TFP growth factors for the years 1963-1996 for each of the three straight line depreciation
models that we have considered thus far in this section are listed in the final table of the Data
Appendix.  However, the arithmetic averages of the three TFP growth rates for the 34 years
1963-1996, gt(7), gt(8), and gt(9), are listed in row 1 of Table 4 below.

Table 4.  Averages of TFP Growth Rates for Straight Line Models (%)
g(7) g(8) g(9) g(10) g(11) g(12)

1963-96 0.66 0.55 0.52 0.55 0.52 0.50
1963-73 1.16 1.06 1.07 1.07 1.05 1.06
1974-91 0.16 0.03 -0.04 0.01 -0.02 -0.08
1992-96 1.35 1.32 1.33 1.32 1.31 1.32

average r or R 5.94 7.84 10.14 11.60 12.20 14.58
growth of K 4.06 4.54 4.69 4.59 4.69 4.80

When the straight line results in Table 4 are compared with the corresponding declining balance
results listed in Table 3, we see that the results are fairly comparable for the major subperiods.
In both sets of models, dropping land and then dropping inventories tends to increase the average
growth rate of capital services and hence decrease the average rate of TFP growth..  However, the
capital service aggregates in the straight line depreciation models tend to grow about .15% to .2%
faster than the corresponding declining balance models. This leads to somewhat lower rates of
TFP growth in the straight line models.  This effect is particularly pronounced for the “good”
years 1992-96: the average TFP growth rate falls from about 1.6% per year for the declining
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balance models to about 1.3 to 1.35% per year for the straight line models.  The average real
interest rate for the straight line models increases from 5.94% to 7.84% when land is dropped
and to 10.14% when land and inventories are dropped.

We turn now to Models 10, 11 and 12, which are counterparts to Models 7,8 and 9 except we
now allow for differential rates of asset inflation (as we did with Models 4,5 and 6 in the
previous section).  For the reproducible components of the capital stock, we switch to the
inflation adjusted vintage user costs defined by (38) in the previous section.  In the present
context where we assume straight line depreciation, this means that the old straight line vintage
user cost Us

t defined earlier  by (45) is replaced by the following straight line depreciation
inflation adjusted vintage user cost:

(41) Us
t ≡ [1 – s/N] P0

t – (1+Rt)-1 [1 − (s+1)/N] P0
t (1+it)

 

 where Rt is now the year t nominal interest rate and it is the year t asset inflation rate for a new
unit of the asset.  
 

 For Model 10, for each year t, we determined the nominal interest rate Rt by setting the operating
surplus equal to the sum of the products of each vintage stock component times its inflation
adjusted user cost of the form (48).  This led to a linear equation in Rt  similar to (46).  Once the
interest rate Rt has been determined for each year t, then the inflation adjusted straight line
depreciation user costs can be calculated, which are of the form (48) for the two reproducible
vintage capital stock components and of the form (42) (with δ = 0) for land and inventories.
Then these vintage user costs can be combined with the corresponding vintage capital stock
components, INSs, IMes, KBAL and KIS, using chain Fisher ideal indexes to form straight line
depreciation inflation adjusted capital price and quantity aggregates, say PK(10) and K(10). The
resulting aggregate price of capital services PK(10) is graphed in Figure 7 below.  We also
combined the 43 inflation adjusted vintage rental prices and quantities of capital with the price
and quantity of labour, PL and QL, to form the primary input aggregate, QX(10), (using a chain
Fisher ideal quantity index as usual).  Once this aggregate input quantity index QX(10) was
determined, we used our aggregate output index QY along with the input index in order to define
the total factor productivity index, TFP(10):
 

(42) TFP(10) ≡ QY/QX(10).

TFP(10) is graphed in Figure 8 below.  
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Figure 7: Alternative Inflation Adjusted Straight Line Depreciation Aggregate Capital
Services Prices
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Figure 8: Alternative Inflation Adjusted Straight Line Depreciation Productivity
Measures
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Models 11 and 12 are entirely analogous to Model 10 except that we dropped land from the list
of inputs in Model 11 and we dropped land and inventories from Model 12.

The arithmetic averages of the three straight line depreciation inflation adjusted TFP growth rates
for the 34 years 1963-1996, gt(10), gt(11), and g t(12), are listed in row 1 of Table 4 above, along
with the average results for the major subperiods.  As was the case with the declining balance
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models described in the previous section, adjusting for inflation tends to reduce average TFP
growth rates.  Thus the average TFP growth rate for the entire period (with all inputs included)
falls from .66% per year (Model 7) to .55% per year when we adjusted our straight line vintage
user costs for inflation (Model 10).

We turn now to our gross capital stock models.

6. Alternative Productivity Measures for Canada Using One Hoss Shay Depreciation

Refer back to section 6 above for information on how the vintage capital stocks Is
t for each year t

and each vintage s were constructed for each of the two reproducible capital stocks was
constructed. We now use formula (16) in section 4 to construct the one hoss shay depreciation
model year t user cost for a reproducible capital stock component.  For the nonreproducible
assets, we used the same user costs in Models 13 to 15 as we used in Models 1 to 3 in section 7.

For Model 13, for each year t, we determined the real interest rate rt by setting the operating
surplus equal to the sum of the products of each vintage stock component times its user cost.
This leads to a nonlinear equation in rt of the following form for each year t:

(41) (1+rt)OS = rt [1−(1+rt)-29]-1 PNS
t KNS

t  + rt [1−(1+rt)-12]-1 PME
t KME

t

                             + rt PBAL
t
 KBAL

t + rt PIS
t
 KIS

t  
 

 where KNS
t and KME

t are the year t gross capital stocks tabled in section 6 above.  The SOLVE
option in SHAZAM was used to solve equation (50) for the real interest rate rt.  Once the
interest rate r t has been determined for each year t, then the one hoss shay depreciation user costs
for each of the four assets can be calculated, which are of the form (16) for the two reproducible
vintage capital stock components and of the form (30) for land and inventories.  Then these user
costs can be combined with the corresponding capital stock components, KNS, KME, KBAL and
KIS, using chain Fisher ideal indexes to form one hoss shay depreciation capital price and quantity
aggregates, say PK(13) and K(13). The resulting aggregate price of capital services PK(13) is
graphed in Figure 9 below.  We also combined the one hoss shay rental prices and quantities of
capital with the price and quantity of labour, PL and QL, to form the primary input aggregate,
QX(13), (using a chain Fisher ideal quantity index as usual).  Once this aggregate input quantity
index QX(13) was determined, we used our aggregate output index QY along with the input index
in order to define the total factor productivity index, TFP(13):
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 Figure 9: Alternative One Hoss Shay Depreciation Aggregate Capital Services Prices
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 Figure 10: Alternative One Hoss Shay Depreciation Productivity Measures
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(42) TFP(13) ≡ QY/QX(13).

TFP(13) is graphed in Figure 10.  

Models 14 and 15 are entirely analogous to Model 13 except that we dropped land from the list
of inputs in Model 14 and we dropped land and inventories from Model 15.
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The TFP growth factors for the years 1963-1996 for each of the three one hoss shay depreciation
models that we have considered thus far in this section are listed in the final table of the Data
Appendix.  However, the arithmetic averages of the three TFP growth rates for the 34 years
1963-1996, gt(13), gt(14), and gt(15), are listed in row 1 of Table 5 below.

Table 5:  Averages of TFP Growth Rates for One Hoss Shay and Other Models (%)
g(13) g(14) g(15) g(16) g(17) g(18)

1963-96 0.65 0.55 0.52 0.59 0.57 0.96
1963-73 1.16 1.07 1.08 0.99 1.09 1.03
1974-91 0.16 0.04 -0.02 0.06 0.05 0.71
1992-96 1.31 1.26 1.26 1.64 1.33 1.73

average r or R 5.72 7.23 8.76 __ __ __
growth of K 4.08 4.55 4.68 4.29 4.43 2.55

When the gross capital stock results in in the first 3 columns of Table 5 are compared with the
corresponding straight line results listed in the first 3 columns of Table 4, we see that the results
are surprisingly close for the major subperiods.  In both sets of models, dropping land and then
dropping inventories tends to increase the average growth rate of capital services and hence
decrease the average rate of TFP growth.  The only major difference between the first 3 columns
of Tables 4 and the corresponding columns in Table 5 are in the average real interest rates: they
tended to be lower in the gross capital stock models.

Differential rates of asset inflation can be introduced into the one hoss shay model of
depreciation.  In the no inflation model of section 4 above, the key equation was (15), which gave
the relationship between the price of a new asset, P0, and its user cost, U0.  With a constant rate
of inflation expected in future periods, so that the ratio of next period’s new asset price to this
period’s price is expected to be (1+i), and with a constant nominal interest rate R, the new
relationship between P0 and U0 is:

(41) P0 = U0 + (1+R)-1(1+i)U0 + (1+R)-2(1+i)2U0 +…+ (1+R)-N+1(1+i)N-1U0

 

 where N is the length of life of a new asset.  Equation (52) says that the price of a new asset
should be equal to the discounted stream of future expected rentals.  Using (52) to solve for U0 in
terms of P0 leads to the following inflation adjusted one hoss shay user cost, which replaces
formula (16):
 

(42) U0 = P0[(1+R)(1+i)-1 – 1](1+i)(1+R)-1[1 – (1+R)-N(1+i)N]-1.
 

 It is now possible to repeat Models 13-15, using the inflation adjusted user costs defined by (53)
for the reproducible capital stock components in place of the earlier user cost formula (16).
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However, given the nonlinearity of (53), we did not follow this path.  If the one hoss shay model
of depreciation were true, then annual rental and leasing rates for reproducible assets would be
constant across vintages at any given point in time.  Thus an old asset would rent for the same
price as a new asset.  This does not seem to be consistent with the “facts” and thus we do not
believe it is worth spending a lot of time on one hoss shay models.
 

 We conclude this empirical part of our paper by computing two additional capital services
aggregates.  For our first additional capital aggregate, we took our declining balance estimates for
the two reproducible capital stock components tabled in section 6 above, KNS and KME, and
formed a chained Fisher ideal aggregate of these two stocks, using the investment prices PNS and
PME as price weights in the index number formula.  We then divided the resulting stock aggregate,
K(16) say,  into the operating surplus OS to obtain a corresponding implicit price, PK(16) say.
PK(16) is graphed in Figure 11 below, along with our first declining balance aggregate capital
services price PK(1) for comparison purposes.  We then combined this capital aggregate with the
price and quantity of labour, PL and QL, in another chained Fisher ideal aggregation in order to
form an input aggregate, QX(16).  Note that land and inventory stocks are omitted from this input
aggregate. Once this aggregate input quantity index QX(16) was determined, we used our aggregate
output index QY along with this input index in order to define the total factor productivity index,
TFP(16):
 

(43) TFP(16) ≡ QY/QX(16).
 

 TFP(16) is graphed in Figure 12 below along with our first declining balance total factor
productivities, TFP(1), for comparison purposes.  
 

 For our second additional capital aggregate, we took our gross capital stock estimates for the two
reproducible capital stock components tabled in section 6 above and formed a chained Fisher
ideal aggregate of these two stocks, using the investment prices PNS and PME as price weights in
the index number formula.  We then divided the resulting stock aggregate, K(17) say,  into the
operating surplus OS to obtain a corresponding implicit price, PK(17) say.  PK(17) is graphed in
Figure 11 below.  We then combined this capital aggregate with the price and quantity of labour,
PL and QL, in another chained Fisher ideal aggregation in order to form an input aggregate, QX(17).
Note that land and inventory stocks are omitted from this input aggregate. Once this aggregate
input quantity index QX(17) was determined, we used our aggregate output index QY along with
this input index in order to define the total factor productivity index, TFP(17):
 

(44) TFP(17) ≡ QY/QX(17).
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Figure 11: Some Capital Services Price Aggregates
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Figure 12: Additional Productivity Measures
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TFP(17) is graphed in Figure 12. It can be seen that these last two TFP concepts (with
‘incorrect’ weighting) lead to a somewhat slower rate of TFP improvement over the entire sample
compared to the no inflation declining balance concept, TFP(1).

Our final miscellaneous productivity measure is labour productivity TFP(18) defined as our
output aggregate QY divided by our measure of labour input QL.17  It is graphed in Figure 12.

                                    
17 This measure was normalized to equal 1 in 1962.
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The final column in Table 5 shows that the average labour productivity growth rate over the 34
years in our sample was .96% per year which is almost twice as big as our typical average TFP
growth rate.  However, by international standards, this is a rather low rate of growth for labour
productivity.

The average rates of TFP growth for our “incorrectly” weighted declining balance productivity
measure TFP(16) and our “incorrectly” weighted gross capital stock productivity measure
TFP(17) for the entire sample period was .59% per year and .57% per year respectively; see
columns 4 and 5 in Table 5 above.  These average growth rates are between those for the no
inflation declining balance Models 1 and 3 (.68% and .55%) and the no inflation gross stock
Models 13 and 15 (.65% and .52%).  Thus our incorrectly weighted models led to productivity
estimates that were fairly close to the estimates from the  “correctly” weighted models.

10.  Conclusion

We have shown that neglecting land and inventories leads to a decline in average TFP growth
rates in Canada of about .1% per year, which is not large in absolute terms, but is large in relative
terms, since the average growth rate for total factor productivity in Canada only averaged .5 to
.6% per year over the years 1963-96.  However, once land and inventories are included in the
capital aggregate, the differences in average TFP growth rates between the various depreciation
models (declining balance, one hoss shay and straight line) proved to be surprisingly small,
whether we allowed for differential rates of asset inflation or not.  

We summarize our results in Figure 13, where we graph our productivity estimates for Model 1
(declining balance depreciation including all assets), Model 4 (declining balance depreciation
including all assets with inflation adjustments),  Model 7 (straight line depreciation including all
assets), Model 10 (straight line depreciation including all assets with inflation adjustments),
Model 13 (one hoss shay depreciation including all assets), Model 16 (declining balance
depreciation but with “incorrect” stock weights instead of user cost weights and excluding land
and inventories) and Model 17 (one hoss shay depreciation but with “incorrect” stock weights
instead of user cost weights and excluding land and inventories).  It can be seen that the three
‘correctly’ weighted models with no inflation were relatively close to each other and finished up
about 5 percentage points higher than the two ‘correctly’ weighted models with inflation
adjustments, TFP(4) and TFP(10), and the two ‘incorrectly’ weighted measures, TFP(16) and
TFP(17). We note the highest estimate of TFP in 1996 is given by Model 1 (a 25.29% increase
from 1962) and the lowest estimate is given by Model 10 (a 19.63% increase).  This is not a huge
range of variation.
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Figure 13: Alternative Total Factor Productivity Estimates for Canada
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All of our productivity estimates paint more or less the same dismal picture of Canada’s
productivity performance.  During the pre OPEC years, 1962-73, TFP growth proceeded at the
satisfactory rate of about 1 per cent per year.  Then for the 18  “lost” years, 1974-1991, TFP
growth was close to 0 on average.  Fortunately, there appears to have been a strong TFP
recovery in recent years; TFP growth averaged somewhere between 1.6% and 1.3% per year for
the 5 years 1992-96.18

There are many problems associated with the measurement of capital that were not discussed in
this paper.  Some of these problems are:

• We have discussed only ex post user costs, which we think is appropriate when measuring
the productivity performance of a firm or industry or country.  However, for many other
purposes (such as econometric modeling), ex ante or expected user costs are more relevant.

• The user costs that were defined neglected the complications due to the business income tax
and other taxes on capital.  Essentially, our user costs assume that these taxes just reduce the
pretax real or nominal rate of return.19  

• We have not related depreciation to the utilisation of the asset.
• We have discussed only the easy to measure components of the capital stock.  Other

components that were not discussed include resource stocks, knowledge stocks and
infrastructure stocks.

                                    
18 Diewert and Fox (1999) hypothesized that the world wide TFP slowdown that occurred in OECD countries
around 1973 was probably related to the big increase in inflation that occurred around that time.  Inflation was high
in Canada during the years 1974-1991 and then low in recent years.  Thus Canada’s recent productivity recovery is
consistent with the Diewert and Fox hypothesis.
19 Thus our rt or R t are returns that include these business taxes.
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• We have not modeled the role of research and development expenditures and of knowledge
spillovers.

• We have not discussed the problems involved in measuring capital when there are quality
improvements in new units of the capital stock.

However, we hope that our presentation of alternative models of depreciation will be helpful to
business and academic economists who find it necessary to construct capital aggregates in the
course of their research.  We also hope that our exposition will be helpful to statistical agencies
who may be contemplating adding a productivity module to their economic statistics.  We have
shown that it is relatively easy to do this once accurate information on asset lives (or declining
balance depreciation rates) are available.
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Data Appendix

In this appendix, we will briefly describe our sources and list the data actually used in our capital
stock and productivity computations.

We begin by describing the construction of our aggregate output variable.  From Tables 52 and 53
of the Statistics Canada publication, National Income and Expenditure Accounts, Annual
Estimates 1984-1995 (and other years), we were able to construct consistent estimates for 19
categories of consumer expenditures for the years 1962-1996.  The 19 categories were: (1) food
and nonalcoholic beverages; (2) alcoholic beverages; (3) tobacco products; (4) clothing, footwear
and accessories; (5) electricity, natural gas and other fuels; (6) furniture, carpets and household
appliances; (7) semidurable household furnishings plus reading and entertainment supplies; (8)
nondurable household supplies, drugs and sundries, toilet articles and cosmetics; (9) medical care,
hospital care and other medical care expenses; (10) new and (net) used motor vehicles plus motor
repairs and parts; (11) motor fuels and lubricants; (12) other auto related services plus purchased
transportation; (13) communications; (14) recreation equipment, jewelry, watches and repairs;
(15) recreational services; (16) educational and cultural services; (17) financial, legal and other
services; (18) expenditures on restaurants and hotels and (19) other services (laundry and dry
cleaning, domestic and child care services, other household services and personal care).  Note that
we do not include consumption of housing services in the above list of consumer goods and
services.  We will also exclude the stock of dwellings from our list of market sector capital inputs.
The price series for the above 19 components of consumer expenditure contain various
commodity taxes, which are revenues for government but are not revenues for private producers.
Thus we attempted to remove these commodity taxes from the above price series using
information contained in the Statistics Canada publication, The Input-Output Structure of the
Canadian Economy 1961-1981 and other years.  Additional information from the Statistics
Canada publication, The Canadian Economic Observer for May 1989 and other Statistics
Canada sources was used in order to construct final estimates of commodity taxes for the above
19 final demand consumption categories.  We note that we were unable to allocate all indirect
taxes and subsidies to the appropriate categories so our market sector output aggregate will be
subject to some measurement error.

We turn now to a description of our international trade data.  It should be mentioned that our
treatment of international trade follows that of Kohli (1978)(1991).  In this treatment, exports are
produced by the market sector and all imports flow into the market sector as intermediate inputs.
These import inputs are either physically transformed by domestic producers or they have
domestic value added to them through domestic transportation, storage or retailing activities.
When we construct our market sector output aggregate, we index import quantities with a
negative sign in keeping with national income accounting conventions.

In forming consistent series for disaggregated export and import components, the principal data
source was the Statistics Canada CANSIM matrices 6566 and 6541. These matrices provide
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current and constant price series for 11 export and 11 import components for the years 1971 to
1993.

For exports, the 11 components were aggregated into the following 5 categories on the basis of
similarities in price movements (Hicks aggregation):  (1) Forestry; (2) Energy; (3) Equipment; (4)
Other goods; and (5) Services.  The Forestry and Energy categories were formed directly from the
equivalent CANSIM series. The Equipment category is an aggregate of the CANSIM series for
Machinery and equipment and Automotive products. The residual Other goods exports category
is an aggregate of the CANSIM Agricultural and fish products, Industrial goods and materials and
Other consumer goods components. The Services category is an aggregate of the CANSIM Travel
services, Transportation services and Commercial services components plus the value of
Government services obtained from Statistics Canada’s Canada’s Balance of International
Payments, 1926 to 1996 and first quarter 1997, Catalogue No. 67-001-XPB, Table 13. The
Government services variable mainly comprises expenditures by foreign governments in Canada.
It is excluded from the CANSIM series but we assume these purchases are from the Canadian
business sector and so should be included in our export series. The eleventh CANSIM
component – Financial Intermediation services – was omitted, as it does not accurately represent
the movement of goods or services. Rather, it is largely a financial balancing item. Export price
indexes were formed using chained Fisher indexes of the component implicit prices from the
CANSIM current and constant price matrices.  As our complete database runs over the years
1962 to 1996, we had to backdate our 5 export categories to 1962 using a variety of sources.  In
order to extend the CANSIM series from 1993 to 1996, again a variety of sources were used.
The values and prices of exports of the four goods components were updated from 1993 to 1996
using Statistics Canada’s Canadian Economic Observer, Catalogue No. 11-010-XPB, Tables 18
and 19. The July 1996 and November 1997 issues spanned the four year period. Values and
current weighted price indexes were presented for exports of Agriculture and fish, Energy,
Forestry, Industrial goods and materials, Machines and equipment, Automotive and Consumer
goods. The value of the four services items making up the Services export component were
updated from Statistics Canada’s Canada’s Balance of International Payments, 1926 to 1996 and
first quarter 1997, Catalogue No. 67-001-XPB, Table 13. The price of the overall Services export
component was updated to 1996 using the price of non-merchandise exports obtained from
CANSIM matrix 6628, Current and constant dollar estimates of non-merchandise exports and
imports from the National Accounts.

The values and price indexes for the five export categories described above are measured at the
border and so exclude export taxes paid by producers. To derive exports in producers’ prices we
needed to estimate export taxes for each of our five export components.  The only export
components, which had significant export taxes, are Energy and Services exports. Between 1973
and 1985 Canada imposed an Oil Export Charge. Values of this tax were obtained from Statistics
Canada’s National Income and Expenditure Accounts, Annual Estimates, 1926-83, Catalogue No.
13-531, Table 51. For Services exports, we assumed that three of its components were taxed:
Travel, Freight and shipping, and Government services. We assumed that Travel and Government
services exports were each made up of half expenditure on fuel and half expenditure on hotels and
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restaurants. Consequently, the commodity tax rates for Fuel and Hotels and restaurants were
each applied to half the expenditure in each of these components. We assumed that half of
Freight and shipping exports were made up of fuel expenses and subject to the commodity tax
rate for Fuel. Other services exports were assumed not to be taxed.

For imports, the 11 components in CANSIM matrices 6566 and 6541 were aggregated into the
following 4 categories on the basis of similarities in price movements (Hicks aggregation):  (1)
Forestry and other; (2) Energy; (3) Equipment; and (4) Services.  The Energy and Equipment
categories are formed directly from the equivalent CANSIM series. The Services category is an
aggregate of the Travel, Transportation and Commercial services components. The Forestry and
other imports category is the aggregate of the Forestry, Agricultural and fish products, Industrial
goods and materials, Automotive products and Other consumer goods components. Financial
Intermediation services are again omitted. Import price indexes were formed using chained Fisher
indexes of the component implicit prices from the CANSIM current and constant price matrices.
As was the case with exports, our 4 import series were backdated to 1962 using a variety of
sources.  The values and prices of imports of the three goods components were updated from
1993 to 1996 using Statistics Canada’s Canadian Economic Observer, Catalogue No. 11-010-
XPB, Tables 18 and 19. The July 1996 and November 1997 issues spanned the four year period.
Values and current weighted price indexes were presented for imports of Agriculture and fish,
Energy, Forestry, Industrial goods and materials, Machines and equipment, Automotive and
Consumer goods. The value of the three services items making up the Services import component
were updated from Statistics Canada’s Canada’s Balance of International Payments, 1926 to
1996 and first quarter 1997, Catalogue No. 67-001-XPB, Table 13. The price of the overall
Services import component was updated to 1996 using the price of non-merchandise imports
obtained from CANSIM matrix 6628, Current and constant dollar estimates of non-merchandise
exports and imports from the National Accounts.  These import values and prices are measured
at the border and so exclude import duties. To derive imports in producers’ prices we needed to
estimate import duties for each of our four import components.  Total import duties for the
period 1962-83 were obtained from Statistics Canada’s National Income and Expenditure
Accounts, Annual Estimates, 1926-83, Catalogue No. 13-531, Table 51. Import duties for 1984-
95 were obtained from National Income and Expenditure Accounts, 1984-95, Catalogue No. 13-
201-XPB, Table 44. Total import duties for 1996 were estimated by assuming the same aggregate
tariff rate applied as that observed in 1995.  An estimate of the duty paid on Equipment imports
was obtained from various issues of the Canadian Tax Foundation’s The National Finances for
the years 1964-85. The following categories from the End products, inedible, category were
allocated to Equipment imports: General purpose industrial machinery, Special industry
machinery, Road motor vehicles, Communication and related equipment, Electric lighting,
distribution and control equipment and Office machines and equipment. Values for 1969, 1974
and 1984 were estimated by interpolating implied tariff rates. Equipment import duties for the
remaining periods, 1962-63 and 1986-96, were estimated by linking the implied Equipment tariff
rate to movements in the total imports implied tariff rate.  Information in The National Finances
indicated there were no import duties on Energy imports. We assume there are no tariffs
applying to Services imports so the remaining duties are allocated to the Forestry and other
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imports component. Between 1973 and 1985 Canada subsidized oil imports. The amount of the
Oil Import Compensation Charge was obtained from The National Finances. This enters as a
subsidy, or negative tax, on Energy imports for these years. The subsidy rate for 1982 appeared
anomalous and was replaced by an interpolated rate.

The government purchases intermediate inputs and investment goods from the market sector so it
is necessary to form estimates for these components of market sector output. We have data on
the value and price of total government consumption and government wages payments from the
OECD Economic Outlook database (Econdata 1997). We derive the value of government
purchases of intermediates by subtracting government wages payments from total government
consumption. Having derived the value and price of government purchases of intermediates, we
combine this with the value and price of government investment in fixed capital from CANSIM
matrices 6828 and 6836, respectively, using a chain Fisher index.  Our next task was to derive
producers’ price series for the two components of government purchases. Indirect taxes paid on
total government purchases from the market sector (both intermediates and fixed capital
expenditure) were obtained from the final demand matrices of Statistics Canada’s Input–Output
Tables for the years 1962 to 1992. An indirect tax rate was formed by taking the ratio of indirect
taxes paid to the value of total government purchases from the market sector. The tax rate for
1992 was assumed to also apply for the remaining four years, 1993 to 1996. Producers’ price
indexes were then formed by multiplying the government intermediates and investment price
indexes by one minus the indirect tax rate.

The final components of our market sector output aggregate are the investment components and
the change in inventories.  From The Canadian Economic Observer, Historical Statistical
Supplement, 1997/98, we obtained investment in nonresidential structures and in machinery and
equipment in current and constant dollars for the years 1962-1997.  The resulting price (PNS and
PME) and quantity series (INS and IME) are listed in Table A1 below.

The construction of price and quantity series for inventory change is not straightforward. From
The Canadian Economic Observer, Historical Statistical Supplement, 1997/98, we obtained
estimates of inventory in current and constant dollars for the years 1962-1997.  The resulting
price series is listed in Table A1 below as PINA (price of inventories using national accounts data).
It can be seen that this price series for inventory change is not credible as a measure of the
average level of inventory prices in a given year.  Hence, we will use the Statistics Canada
National Balance Sheet Accounts, Annual Estimates, 1996 for estimates of the total stock of
inventories (in current dollars) held at the end of the year for the years 1964 to 1996.  This in
turn is equal to the beginning of the year stock of inventories held by the market sector (the
government’s holdings of inventories was negligible) for the years 1965-1997.  This series can be
extended back to stocks held at the beginning of 1962 using the National Balance Sheet Accounts
for an earlier year.  Constant dollar stocks of inventories are available for the end of years 1961-
1982 from the National Balance Sheet Accounts, Annual Estimates, 1984 and for the end of years
1984-1993 from the National Balance Sheet Accounts, Annual Estimates, 1994.  The resulting
beginning of the year inventory stock price and quantity series for the years 1962-1994 are listed
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in Table A1 as PIS and KIS.  In order to extend our inventory price series to 1997, we linked PIS to
the (erratic) national accounts series PINA at the year 1992, which was the base year for the
constant dollar inventory change series.  The final 3 entries in the PIS series reflect this linking
procedure.  The resulting PIS series looks quite reasonable.  Of course, once we have our price
series for beginning of the year inventory stocks, PIS, it can be divided into the balance sheet
value estimates to obtain the quantity series for beginning of the year inventory stocks, KIS, for
all 37 years in our sample, 1962-1997.  Once KIS has been determined, then inventory change,
QIC for the 36 years 1962-1996 can be obtained by differencing the stock series, KIS.

Table A1:  Market Sector Output Data for Canada; 1962-1997
Year PNS PME PIS PINA PY

1962 1.0000 1.0000 1.0000 1.0000 1.0000
1963 1.0285 1.0280 0.9866 0.9918 1.0241
1964 1.0579 1.0695 1.0288 1.0909 1.0456
1965 1.1168 1.1114 1.0451 1.0445 1.0842
1966 1.1843 1.1476 1.0718 1.0325 1.1422
1967 1.2355 1.1398 1.0970 1.0960 1.1797
1968 1.2492 1.1387 1.1180 1.1506 1.2306
1969 1.3199 1.1692 1.1376 1.0938 1.2936
1970 1.3872 1.2245 1.1618 1.3038 1.3495
1971 1.4713 1.2576 1.1638 1.0937 1.4027
1972 1.5549 1.3077 1.1830 1.2551 1.4800
1973 1.7235 1.3433 1.2974 1.3728 1.6212
1974 2.0439 1.4864 1.5420 1.4454 1.8776
1975 2.2837 1.6650 1.8820 1.7817 2.1021
1976 2.4139 1.7641 1.9290 1.7078 2.2773
1977 2.5428 1.8706 1.9544 2.0536 2.4025
1978 2.7279 1.9467 2.0555 1.6277 2.5687
1979 2.9751 2.0667 2.2834 1.8909 2.8554
1980 3.3367 1.9616 2.6506 4.2658 3.2014
1981 3.7133 1.9860 3.0073 2.5485 3.5656
1982 3.9903 2.1330 3.2945 2.7584 3.8687
1983 3.9631 2.1127 3.3440 2.7320 4.0607
1984 4.1112 2.0873 3.4455 2.9947 4.1719
1985 4.2349 2.0339 3.5308 2.4212 4.2571
1986 4.2977 2.0313 3.5633 2.8847 4.3085
1987 4.4991 1.9851 3.6102 2.7174 4.4881
1988 4.7563 1.9477 3.7149 4.4340 4.6604
1989 4.9655 1.9397 3.8702 2.8741 4.8720
1990 5.1192 1.9237 3.8954 4.2322 5.0121
1991 5.0094 1.7483 3.8846 3.1432 5.0985
1992 4.9730 1.6926 3.7546 3.1024 5.1114
1993 5.0365 1.7181 3.9027 3.9837 5.1431
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1994 5.2066 1.7630 4.0362 2.2776 5.2164
1995 5.2717 1.7845 4.1109 3.3968 5.3585
1996 5.2479 1.7719 4.1564 3.4343 5.4999
1997 4.0474 3.3443
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Table A1:  Market Sector Output Data for Canada; 1962-1997 (cont’d)
Year INS IME KIS QIC QY

1962 2560.0 2368.0 13811.3 791.8 32312.7
1963 2647.5 2570.1 14603.1 467.5 33750.7
1964 3060.7 3023.8 15070.7 461.1 36237.1
1965 3338.2 3551.4 15531.8 1145.3 38933.8
1966 3830.9 4229.7 16677.1 1176.2 41905.0
1967 3631.8 4321.8 17853.4 352.7 43435.4
1968 3601.6 4022.9 18206.1 759.0 44962.3
1969 3605.6 4404.0 18965.1 1579.5 46565.0
1970 3955.5 4489.0 20544.6 376.3 48619.9
1971 4080.2 4623.2 20920.9 316.5 50250.7
1972 4063.3 4999.5 21237.5 120.1 51961.9
1973 4384.0 6119.1 21357.5 428.7 55649.0
1974 4652.5 6893.1 21786.2 1546.0 57391.4
1975 5261.6 7285.4 23332.3 650.7 59005.1
1976 5139.9 7603.2 23982.9 1553.2 62302.4
1977 5450.6 7584.9 25536.1 2033.7 65853.2
1978 5591.9 8207.6 27569.8 1059.5 67678.3
1979 6311.6 9550.6 28629.3 1436.1 69943.6
1980 7030.7 11527.5 30065.5 -907.5 70814.5
1981 7565.8 13936.2 29157.9 450.0 73641.7
1982 6877.9 11750.8 29608.0 -2476.4 71606.8
1983 6309.2 11531.0 27131.5 -670.5 72619.0
1984 6242.5 12306.7 26461.1 1428.8 77445.1
1985 6556.9 14174.9 27889.8 790.5 81153.7
1986 6177.5 15712.8 28680.4 570.6 83345.0
1987 6416.4 18135.8 29251.0 929.3 87498.1
1988 7067.9 21512.3 30180.3 699.7 91071.2
1989 7285.1 23169.5 30880.0 1180.8 92786.7
1990 7302.0 22141.5 32060.7 -569.0 92968.8
1991 7065.7 22260.9 31491.8 -613.4 91988.5
1992 5962.9 22836.3 30878.4 -1149.9 92059.5
1993 5992.9 21725.6 29728.5 357.6 95077.8
1994 6521.2 23719.6 30086.1 1820.7 100532.2
1995 6473.1 25129.9 31906.8 2051.4 103633.5
1996 6752.6 26179.2 33958.2 1696.2 104886.0
1997 35654.4

This completes our description of the construction of the components of our market sector
output aggregate.  The aggregate price of output, PY, and the aggregate quantity of output, QY,
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were constructed as chained Fisher ideal indexes of the 19 consumption components, the 5 export
components, the 4 import components, the 2 government components (investment purchases
and purchases of goods and services), the 2 investment components and the inventory change
component.  PY and QY are listed in Table A1.

We now describe the construction of the primary input components for the market sector of the
Canadian economy.

We first describe our labour estimates. From The Canadian Economic Observer, Historical
Statistical Supplement, 1997/98, we obtained estimates of the number of self employed workers
(including unpaid family workers) from Table 8.  For the years 1962-1974, we obtained the same
information from various Canada Year Books.  For the year 1975, we interpolated an estimate
using the two sources. From Table 9 of The Canadian Economic Observer, Historical Statistical
Supplement, 1997/98, we obtained estimates of total labour income and labour income paid out to
public administration workers.  Thus by subtraction, we obtained estimates for market sector
employment income.  From the Organisation of Economic Cooperation and Development's
Economic Outlook database (Econdata 1997), we obtained data on the business compensation
rate, PL, which is an annual wage that reflects the full cost of employing a full time worker.  We
attributed 2/3 of this annual wage rate to the self employed and we assume that all of the self
employed worked in the market sector rather than the government sector.  This gave us a new
(bigger) estimate of market sector total labour income.  We divided this labour value series by the
full time market wage rate PL in order to obtain market sector labour input, QL.  The series PL and
QL are listed in Table A2.  Subtracting PL times QL from the value of market sector outputs (less
imports), PY times QY, gave us estimates of the market sector’s operating surplus, OS.  This
series is also listed in Table A2.

We turn now to the capital components of the input aggregate.  We have already described how
we used the National Balance Sheet Accounts for estimates of the total stock of inventories.  The
same balance sheets can be used to form estimates of the beginning of the year stocks of
nonresidential structures, machinery and equipment and land used by the market sector.  We will
not go through all of the details of the construction of these series.  These beginning of the year
balance sheet estimates for constant 1962 dollar net nonresidential structures stocks, KNS,
machinery and equipment stocks, KME, and business and agricultural land stocks, KBAL, are listed
in Table A2 below along with the corresponding price of land, PBAL.  Note that we have assumed
that the stock of business and agricultural land is constant.  The price for a unit of the
nonresidential structures is assumed to be the same as the corresponding investment price, PNS.
The price for a unit of the machinery and equipment stock is assumed to be the same as the
corresponding investment price, PME.20

                                    
20 We could have used the price deflators for nonresidential structures and for machinery and equipment that can be
constructed using the constant dollar estimates of these stock components that may be found in the National
Balance Sheet Estimates.  However, we found that the resulting balance sheet price series for machinery and
equipment differed substantially from the corresponding investment price deflator for machinery and equipment listed
in Table A1, PME.  We feel that the investment price and quantity data are more accurate than the balance sheet price
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and quantity data with the exception of the national accounts change in inventories series.  Thus we used the
national accounts investment prices PNS and PME to deflate the balance sheet capital stock values for nonresidential
structures and machinery and equipment repectively.
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Table A2: Market Sector Input Data for Canada; 1962-1997
Year PL QL OS KNS KME KBAL PBAL δNS δME
1962 1.0000 24118.2 8194.5 30006.6 17983.7 11743.1 1.0000 0.0578 0.0969
1963 1.0422 24657.5 8864.4 30830.7 18609.7 11743.1 1.0695 0.0417 0.1191
1964 1.0984 25555.6 9821.6 32192.4 18964.3 11743.1 1.1647 0.0743 0.1104
1965 1.1795 26382.0 11096.6 32860.3 19894.6 11743.1 1.3126 0.0540 0.1241
1966 1.2272 28284.5 13152.1 34424.6 20977.6 11743.1 1.4529 0.0249 0.0830
1967 1.3048 29314.1 12993.2 37398.8 23465.5 11743.1 1.6315 0.0108 0.0927
1968 1.3729 30086.2 14025.0 40628.4 25611.2 11743.1 1.7998 0.0797 0.1207
1969 1.4799 31107.9 14202.2 40991.6 26542.2 11743.1 1.9647 0.0375 0.1250
1970 1.4660 33670.2 16255.7 43058.0 27627.3 11743.1 2.1581 0.0571 0.1129
1971 1.5833 34141.3 16427.9 44555.9 28997.2 11743.1 2.3732 0.0302 0.1297
1972 1.7062 35323.9 16635.3 47292.0 29860.1 11743.1 2.7360 0.0959 0.1140
1973 1.8592 37185.2 21082.2 46820.1 31455.3 11743.1 3.2506 0.1145 0.1871
1974 2.1251 38782.7 25338.0 45844.7 31689.7 11743.1 4.0754 -0.0113 0.1368
1975 2.4558 39289.9 27545.4 51015.6 34248.6 11743.1 5.1559 -0.0038 0.0829
1976 2.7657 40545.3 29748.1 56471.3 38693.9 11743.1 6.1750 0.0562 0.1249
1977 3.0256 41185.8 33599.6 58439.8 41466.0 11743.1 7.1203 0.0781 0.1078
1978 3.1726 42806.5 38032.9 59325.3 44579.4 11743.1 8.2260 0.0792 0.1219
1979 3.3912 45118.9 46708.6 60218.0 47354.4 11743.1 9.5535 0.0900 -0.0008
1980 3.7144 46640.3 53461.6 61107.2 56943.2 11743.1 11.4351 0.0697 0.1244
1981 4.1680 47985.3 62573.4 63880.1 61387.2 11743.1 13.7683 0.0304 0.2081
1982 4.5917 46436.4 63803.4 69506.2 62549.6 11743.1 14.9309 -0.0206 0.0557
1983 4.8055 46587.1 71009.0 77816.8 70819.3 11743.1 14.7458 0.1067 0.1246
1984 5.0528 47808.0 81529.4 75826.6 73528.3 11743.1 14.5917 0.0714 0.0990
1985 5.3243 49086.8 84128.0 76652.6 78559.1 11743.1 14.7611 0.0504 0.1711
1986 5.4839 50703.4 81039.4 79349.1 79293.0 11743.1 14.3209 0.0893 0.1154
1987 5.8528 51853.3 89211.6 78437.9 85853.4 11743.1 15.1011 0.0865 0.1538
1988 6.2403 53625.4 89787.8 78070.0 90782.5 11743.1 16.2874 0.0630 0.1670
1989 6.5619 54794.6 92505.0 80220.3 97134.3 11743.1 17.6322 0.0478 0.1502
1990 6.8402 55307.1 87658.5 83670.3 105718.0 11743.1 19.4612 -0.0019 0.0532
1991 7.1797 54288.2 79231.1 91135.2 122239.5 11743.1 19.8549 0.0650 0.1449
1992 7.4056 53822.7 71961.9 92275.7 126789.8 11743.1 20.7385 0.0738 0.1873
1993 7.5141 54492.6 79527.0 91432.1 125878.0 11743.1 21.5174 0.0918 0.1744
1994 7.6295 55303.1 102483.4 89034.4 125654.0 11743.1 22.1142 0.0487 0.1522
1995 7.7065 56783.2 117724.1 91219.3 130249.1 11743.1 23.1090 0.0338 0.1611
1996 7.9883 56848.6 122736.2 94606.3 134392.0 11743.1 23.7180 0.0716 0.1645
1997 94586.6 138467.1 11743.1 25.0208

Recall equation (13) in section 3 above which defined the declining balance capital stock in terms
of vintage investments.  This equation can be manipulated to yield the following relationship
between the capital stock at the beginning and end of year t, Kt and Kt+1 respectively, and
investment during year t, It:

(A1)  K t+1 = (1-δ)Kt + It

where δ is the declining balance depreciation rate.  We can use the information from the national
accounts on investment in nonresidential structures listed in Table A1 above, QNS, along with the
information from the national balance sheets on the net stock of nonresidential structures, KNS,
and use equation (A1) to construct implied geometric depreciation rates, δNS, that are consistent



46

with the two data sources.  Similarly, we can use the information from the national accounts on
investment in nonresidential structures listed in Table A1 above, QME, along with the information
from the national balance sheets on the net stock of nonresidential structures, KME, from Table
A2 and use equation (A1) to construct implied geometric depreciation rates, δME, that are
consistent with the two data sources.  

Table A3: Productivity Growth Rates (%) for 18 Capital Models for Canada
Year g(1) g(2) g(3) g(4) g(5) g(6) g(7) g(8) g(9)
1963 2.20 2.13 2.25 2.14 2.11 2.25 2.18 2.13 2.26
1964 3.96 3.89 3.92 3.91 3.89 3.92 3.99 3.94 3.99
1965 4.02 3.92 3.89 3.95 3.92 3.88 4.14 4.05 4.05
1966 0.99 0.84 0.92 0.85 0.81 0.90 1.16 1.02 1.12
1967 -0.59 -0.77 -0.75 -0.77 -0.79 -0.77 -0.39 -0.56 -0.53
1968 0.38 0.26 0.15 0.28 0.25 0.14 0.50 0.39 0.29
1969 0.09 -0.02 -0.01 0.03 -0.02 -0.02 0.14 0.04 0.05
1970 -2.65 -2.78 -2.66 -2.78 -2.82 -2.67 -2.60 -2.72 -2.60
1971 1.39 1.30 1.23 1.32 1.31 1.22 1.45 1.35 1.29
1972 -0.07 -0.15 -0.21 -0.18 -0.15 -0.22 -0.02 -0.10 -0.16
1973 2.14 2.06 1.97 2.01 2.01 1.94 2.19 2.10 2.02
1974 -1.19 -1.31 -1.39 -1.39 -1.39 -1.42 -1.10 -1.23 -1.31
1975 0.55 0.39 0.43 0.32 0.40 0.43 0.52 0.36 0.39
1976 1.86 1.72 1.65 1.67 1.76 1.66 1.83 1.70 1.62
1977 3.31 3.17 3.19 3.10 3.15 3.19 3.29 3.14 3.16
1978 -1.28 -1.42 -1.36 -1.44 -1.43 -1.38 -1.30 -1.45 -1.39
1979 -1.74 -1.88 -1.90 -1.96 -1.94 -1.95 -1.72 -1.86 -1.89
1980 -2.49 -2.68 -2.71 -2.82 -2.79 -2.80 -2.45 -2.64 -2.67
1981 0.48 0.30 0.01 0.24 0.16 -0.04 0.52 0.34 0.04
1982 -1.82 -2.04 -2.19 -1.85 -2.07 -2.20 -1.75 -1.98 -2.14
1983 0.37 0.30 -0.02 0.32 0.23 -0.04 0.28 0.20 -0.13
1984 3.87 3.78 3.63 3.85 3.74 3.60 3.73 3.64 3.48
1985 1.90 1.76 1.81 1.90 1.74 1.79 1.77 1.64 1.69
1986 -0.69 -0.81 -0.83 -0.72 -0.84 -0.87 -0.73 -0.84 -0.87
1987 2.34 2.24 2.20 2.20 2.15 2.11 2.31 2.22 2.18
1988 0.46 0.35 0.33 0.30 0.25 0.23 0.45 0.35 0.33
1989 -0.90 -1.01 -1.06 -1.08 -1.09 -1.14 -0.88 -0.99 -1.03
1990 -1.56 -1.65 -1.67 -1.77 -1.75 -1.77 -1.57 -1.67 -1.68
1991 -0.23 -0.28 -0.34 -0.37 -0.35 -0.40 -0.31 -0.35 -0.41
1992 0.52 0.51 0.48 0.50 0.51 0.48 0.17 0.14 0.10
1993 2.01 2.01 1.99 2.00 1.99 1.98 1.71 1.70 1.66
1994 4.33 4.32 4.32 4.33 4.32 4.32 4.06 4.04 4.04
1995 0.58 0.54 0.59 0.57 0.54 0.59 0.33 0.28 0.33
1996 0.69 0.63 0.71 0.65 0.62 0.71 0.48 0.42 0.49
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The resulting depreciation rates are listed in Table A2.  Although the arithmetic averages of these
annual geometric depreciation rates ( .0555 for nonresidential structures and .1256 for machinery
and equipment) are very reasonable, it can be seen that the annual fluctuations in these rates are
unacceptably large.  Thus we regard the balance sheet estimates for the net capital stocks for the
two reproducible capital stock components, KNS and KME, as being “correct” over the entire
sample period but not in the year to year movements.

Table A3: Productivity Growth Rates (%) for 18 Capital Models for Canada (cont’d)
Year g(10) g(11) g(12) g(13) g(14) g(15) g(16) g(17) g(18)
1963 2.12 2.10 2.25 2.08 2.01 2.10 2.22 2.07 2.17
1964 3.95 3.94 3.99 3.90 3.84 3.85 3.90 3.83 3.59
1965 4.08 4.07 4.06 4.11 4.03 4.02 3.89 4.01 4.08
1966 1.04 1.01 1.12 1.20 1.08 1.18 0.95 1.19 0.39
1967 -0.56 -0.57 -0.54 -0.29 -0.42 -0.36 -0.69 -0.34 0.01
1968 0.41 0.38 0.28 0.55 0.45 0.38 0.20 0.40 0.86
1969 0.08 0.04 0.05 0.15 0.05 0.06 0.00 0.07 0.16
1970 -2.72 -2.76 -2.61 -2.58 -2.69 -2.57 -2.63 -2.56 -3.53
1971 1.38 1.38 1.28 1.47 1.38 1.33 1.24 1.33 1.93
1972 -0.12 -0.10 -0.17 -0.01 -0.08 -0.13 -0.20 -0.13 -0.06
1973 2.06 2.06 1.99 2.21 2.13 2.06 2.00 2.07 1.74
1974 -1.30 -1.30 -1.34 -1.03 -1.14 -1.20 -1.33 -1.16 -1.12
1975 0.29 0.37 0.39 0.54 0.39 0.43 0.51 0.52 1.48
1976 1.64 1.73 1.62 1.86 1.73 1.67 1.71 1.75 2.32
1977 3.07 3.12 3.15 3.30 3.16 3.18 3.25 3.25 4.06
1978 -1.46 -1.45 -1.40 -1.29 -1.43 -1.37 -1.34 -1.33 -1.12
1979 -1.93 -1.92 -1.94 -1.70 -1.83 -1.85 -1.87 -1.81 -1.95
1980 -2.78 -2.75 -2.77 -2.40 -2.57 -2.58 -2.66 -2.54 -2.06
1981 0.28 0.20 -0.01 0.58 0.42 0.17 0.09 0.24 1.08
1982 -1.78 -2.01 -2.14 -1.67 -1.86 -1.99 -2.09 -1.89 0.48
1983 0.23 0.14 -0.14 0.26 0.17 -0.15 0.02 -0.09 1.09
1984 3.71 3.60 3.46 3.65 3.53 3.37 3.66 3.42 3.92
1985 1.79 1.63 1.68 1.69 1.55 1.57 1.85 1.63 2.06
1986 -0.76 -0.88 -0.90 -0.77 -0.89 -0.92 -0.77 -0.86 -0.57
1987 2.19 2.13 2.10 2.27 2.17 2.13 2.29 2.20 2.65
1988 0.30 0.26 0.24 0.43 0.33 0.31 0.43 0.39 0.64
1989 -1.06 -1.06 -1.11 -0.87 -0.97 -1.02 -0.94 -0.91 -0.29
1990 -1.78 -1.77 -1.78 -1.58 -1.67 -1.68 -1.55 -1.56 -0.73
1991 -0.44 -0.42 -0.47 -0.33 -0.38 -0.45 -0.26 -0.35 0.80
1992 0.12 0.13 0.09 0.14 0.11 0.06 0.47 0.14 0.94
1993 1.69 1.68 1.66 1.68 1.66 1.62 2.02 1.70 2.01
1994 4.05 4.03 4.03 4.02 3.98 3.97 4.32 4.01 4.19
1995 0.31 0.28 0.33 0.28 0.21 0.24 0.62 0.32 0.40
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1996 0.43 0.41 0.49 0.42 0.35 0.40 0.75 0.48 1.09

In Table A3, we list the TFP growth rates for each of the 18 Models discussed in the main text
for the years 1963-1996.
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