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SUMMARY
We estimate the costs of distributing electricity using data on municipal electric utilities in Ontario, Canada
for the period 1993±5. The data reveal substantial evidence of increasing returns to scale with minimum
e�cient scale being achieved by ®rms with about 20,000 customers. Larger ®rms exhibit constant or
decreasing returns. Utilities which deliver additional services (such as water/sewage), have signi®cantly lower
costs, indicating the presence of economies of scope. Our basic speci®cations comprise semiparametric
variants of the translog cost function where output enters non-parametrically and remaining variables
(including their interactions with output) are parametric. We rely upon non-parametric di�erencing
techniques and extend a previous di�erencing test of equality of non-parametric regression functions to a
panel data setting. Copyright # 2000 John Wiley & Sons, Ltd.

1. INTRODUCTION

In various parts of the world electricity industries have been undergoing restructuring. The main
driver has been a fundamental change in the economics of generating electricity. As a result of low
natural gas prices and improved gas turbine technology, minimum e�cient scale has fallen
dramatically in this segment of the industry so that competitive markets in generation can be
established. Transmission and distribution of electricity, however, continue to be natural
monopolies. Ownership of such facilities conveys considerable market power and thus continues
to attract regulatory oversight.

The structure and ownership of electricity industry varies. In many jurisdictions, all stages of
the electricity production processÐgeneration, transmission and distributionÐare dominated
by a single vertically integrated ®rm which may be privately or publicly owned. In others, distinct
®rms subsume varying combinations of these functions. For example, a number of jurisdictions
have multiple generating companies some of which also own transmission and distribution. Only
a few jurisdictions have many distribution companies.

In this paper we focus on the economics of distributing electricity. While there are many
empirical studies which analyse the electricity industry as a whole or the generation segment
speci®cally, there are precious few (we will reference them momentarily) which deal principally
with distribution. There are three reasons for this. First, many regulatory jurisdictions have too
few distinct entities engaged in distribution to permit serious statistical analysis. Second, inter-
jurisdictional comparisons are di�cult because of varying accounting practices and di�ering
de®nitions of distribution (which is usually de®ned by the voltage at which power is taken from
the transmission system). Third, where distribution is part of a vertically integrated utilityÐand
this is frequently the caseÐa clear and comparable separation of distribution costs from those of
other stages of production is typically not available.

Copyright # 2000 John Wiley & Sons, Ltd. Received 30 September 1997
Revised 11 May 1999

JOURNAL OF APPLIED ECONOMETRICS

J. Appl. Econ. 15: 187±210 (2000)

* Correspondence to: Professor A. Yatchew, Department of Economics, University of Toronto, 150 St George Street,
Toronto, Canada M5S 3G7; e-mail: yatchew@chass.utoronto.ca



The data we examine do not su�er from these di�culties. Our analysis involves 81 municipal
distributing utilities in Ontario, Canada, ranging in size from about 600 to 220,000 customers.
Accounts are kept on a uniform basis as prescribed by the regulator, thus facilitating
comparability in empirical work. Almost all power delivered by these utilities is purchased from
Ontario Hydro, the dominant provincial generatorÐvery few are involved in self-generation or
ownership of transmission facilities.

Three recent studies examine electricity distribution costs in detail. Giles and Wyatt (1993)
estimate a total cost function for 60 distributors in New Zealand. Salvanes and Tjotta (1994)
estimate a variable cost function for 100 Norwegian distributors. Both of these studies are cross-
sectional. Filippini (1996, 1997) estimates both variable and total cost functions using panel data
on 39 Swiss distributors for the period 1987±91. All the above studies ®nd evidence of scale
economies in the distribution of electricity, though for New Zealand and Norway, minimum
e�cient scale occurs at surprisingly small levels of operation.1

In this paper we estimate total cost functions where total costs (TC) consist of operations and
maintenance (OM), billing/collection/administration (BCA), depreciation (DEP) and interest
(INT) costs. While each of the above three studies include the cost of power in their dependent
variable, we exclude this component in order to focus exclusively on the distribution service
provided by the utility. The cost of power, which includes generation and transmission,
dominates distribution costs (in Ontario by a factor of more than 5 :1), thus even small
percentage errors in its measurement could substantially reduce the accuracy of estimates of
distribution cost parameters. In Ontario, the prices paid for this power are established through a
quasi-regulatory process. Volume discounts on power purchases are not available. Thus, one
would not expect any signi®cant scale economies in the power procurement function of these
utilities, adding justi®cation to our analysis of pure distribution costs. We ®nd substantial
evidence of increasing returns to scale with minimum e�cient scale being achieved by ®rms with
about 20,000 customers. Larger ®rms exhibit constant or decreasing returns. Utilities which
deliver additional services (46% of the utilities under study provide other municipal servicesÐ
such as water/sewage) have lower costs, indicating the presence of economies of scope.

Our basic speci®cations are variants of the translog cost function where output enters non-
parametrically while remaining variables (including their interaction with output) enter in a
parametric fashion. Section 2 describes the model and provides additional details about the data.
Section 3 uses single-equation di�erencing techniques to analyse costs. Section 4 outlines
di�erencing estimation of variance components, extends a previous di�erencing test of equality
of non-parametric regression functions (Yatchew, 1998b) to this setting and reports results of
tests applied to the panel data. For an alternative test procedure see Baltagi et al. (1996). The
concluding Section 5 compares our results to those of previous studies.

2. MODEL AND DATA

During the period of our analysis there were approximately 300 municipal distributing utilities in
Ontario. We use the 81 utilities for which the most complete data exist. Since data tend to be
missing for small utilities, our truncated data-set actually represents over 70% of the municipal

1Other studies which focus on the distribution sector include Neuberg (1977), Nelson (1990), Hjalmarsson and
Veiderpass (1992a,b) and Salvanes and Tjotta (1998). For studies of the generation segment or vertically integrated
electric utilities see references contained in e.g. Pollitt (1995) or Kwoka (1997).
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distributor customer base. In 1995, Ontario municipal distributors purchased about 90 twh of
electricity at 6.5 ¢/kwh. (Throughout the paper, monetary amounts are in Canadian dollars.) The
electricity was sold to end-users at an average price of about 7.6 ¢/kwh. Thus total municipal
distributor revenues were about $1 billion after subtracting the cost of power. Variable costs
which consist of OM plus BCA costs represent about 52% of this amount (with OM and BCA
costs taking 27% and 25% shares respectively). Depreciation and interest expense represent 25%
and 3%, (collectively, these utilities have very low debt). The remaining 20% of revenues ¯ows to
net income.

Our main empirical objective is to estimate scale economies of delivering electricity. A priori,
the relationship between ®rm size and unit costs may be ¯at, increasing, decreasing or U-shaped;
it may be concave or it may have multiple in¯ection points. We propose therefore to estimate the
scale e�ect using a semiparametric model.

In addition to the level of output, a number of variables may in¯uence costs and therefore need
to be incorporated into the model. These covariates include the conventional arguments of cost
functionsÐ the price of labour which we measure by the hourly wage (WAGE) of linemen of
identical grade; and the price of capital (PCAP), which we measure by dividing accumulated
gross investment in plant and facilities (TOTPLANT) by total kilometres of distribution wire
(KMWIRE).

We also include a series of covariates which re¯ect di�erences among utilities. Since the level of
service to a `typical' customer will in general in¯uence costs, we include the total quantity of
electricity delivered per customer (KWH/CUST). The remaining lifetime of assets (LIFE) is
included to allow for vintage e�ectsÐ for example, one might expect older capital to require
more maintenance. Load factor (LF )Ðwhich measures capacity utilization relative to peak
usageÐ is included since high load factor utilities require greater expenditures in order to
maintain reliability. There is considerable variation in the density of customers across utilities. To
capture this e�ect, we divide the total kilometres of distribution wire by the number of customers
(KMWIRE/CUST). One would expect higher costs, the greater the distance between customers.

About 46% of our distributors (37 of 81) are part of local Public Utility Commissions (PUCs)
which deliver additional services such as water and sewage removal. The regulator requires that
costs of the various services be separated as far as possible and provides detailed accounting rules
for this purpose (see Ontario Hydro, 1995). Although operations are indeed separate, other
functions (e.g. billing and collection) are performed on a shared basis and each service is
allocated a pro rata share of costs. Thus, one would expect PUCs to exhibit some cost savings.
One of our objectives will be to assess whether this is indeed the case.

Our basic econometric speci®cation is given by:

log�TC=CUST� � f �log�CUST��
� b1 log�WAGE� � b2 log�PCAP�
� 1

2b11 log
2�WAGE� � 1

2b22 log
2�PCAP� � b12 log�WAGE� log�PCAP�

� b31 log�CUST� log�WAGE� � b32 log�CUST� log�PCAP�
� b4PUC� b5 log�KWH=CUST� � b6 log�LIFE� � b7 log�LF�
� b8 log�KMWIRE=CUST� � v

�1�

We assume little about the function f beyond smoothness, thus, equation (1) is a translog cost
function, with the output variable (CUST) entering both non-parametrically (through f ) and
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parametrically (through the interaction terms between output and the price variables). It is
readily veri®ed that if these interaction terms are zero (i.e. b31 � b32 � 0) then the cost function is
homothetic. The model has a partial linear structure y � f �x� � zb� v where the non-parametric
variable x is log(CUST) and the vector z is composed of the various price and other variables
which enter parametrically. We adopt the notational convention that lower-case italicized names
represent transformed variables in logarithmic form, e.g. kwh � log(KWH/CUST). For conven-
ient reference variable de®nitions and summary statistics are contained in Appendix 2.

The partial linear structure is amenable to some particularly simple `di�erencing' techniques
because the parametric and non-parametric portions of the model are additively separable. The
essential idea is to reorder the data so that the values of the non-parametric variable are `close',
then to take ®rst- or higher-order di�erences to remove the non-parametric e�ect. We will avail
ourselves of this device extensively in this paper.2

When applying the di�erencing procedures used in this paper, the ®rst few observations may be
treated di�erently or lost.3 For the mathematical arguments below, such e�ects are negligible.
Thus, we will use the symbol �: to denote `equal except for end e�ects'. In the panel data portion
of the paper, asymptotics are on N (the number of observations in each period) with T (the
number of time periods) ®xed. Throughout, IN; IT; INT will denote identity matrices of dimension
N, T and N �T respectively, iT will be a T� 1 column vector of ones, 1T � iTi

0
T a T-dimensional

square matrix of ones. We use the abbreviations tr for trace, dim for dimension. A�B is the
matrix whose ijth entry is AijBij.

3. SINGLE-EQUATION ANALYSIS

3.1 Basic Setup and Di�erencing Procedures

Our model may be written in the form:

yit � ft�xit� � zitbt � vit �2�

where t � 1, 2, 3 for the years 1993±5 and i � 1; . . . ;N indexes utilities. Throughout the paper,
the non-parametric variable xit is a scalar.

Let yt � �y1t; . . . ; yNt�0 be the N-dimensional column vector of the values of the dependent
variable in year t. De®ne xt � �x1t; . . . ; xNt�0 and vt � �v1t; . . . ; vNt�0 in a similar fashion. We
assume that for ®xed t, the residuals are distributed independently and homoscedastically across
®rms. For each ®rm, the k-dimensional row vector zit contains data on the parametric variables
and we de®ne the N� k matrix Zt � �z01t; . . . ; z0Nt�0. We emphasize that for purposes of this
section, the data have already been ordered so that within each year, the x's are in increasing
order, i.e. x1t 4 � � � 4 xNt , t � 1, 2, 3. In matrix notation, we write our model as:

yt � ft�xt� � Ztbt � vt �3�

where ft�xt�0 � � ft�x1t�; . . . ; ft�xNt��.
2Di�erencing has been used in the pure non-parametric regression model by Rice (1984), Hall et al. (1990), Yatchew
(1988, 1998b) and Cox and Koh (1989). In the partial linear model it has been used by Powell (1987), Ahn and Powell
(1993) and Yatchew (1997).
3 For example, the simplest di�erencing estimator of the residual variance in a non-parametric regression is of the form
s2 � SN

i �yi ÿ yiÿ1�2=2N, whence the summation begins at i � 2.
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Let m be the order of di�erencing and d0; d1; . . . ; dm the optimal di�erencing weights.4 The
weights satisfy the conditions:

Xm
j�0

dj � 0
Xm
j�0

d
2
j � 1 �4�

The ®rst condition ensures that di�erencing removes the non-parametric e�ect as sample size
increases and the x's become close, (see equation (6) below). The second condition is a
normalization which implies that the residuals in the di�erenced equation (6) have the same
variance as those in the original equation (3). De®ne the di�erencing matrix:

D
N�N
�

d0; d1; d2; . . . ; dm; 0; . . . . . . . . . . . . : : :; 0
0; d0; d1; d2; . . . ; dm; 0; . . . . . . . . . . . . ; 0

..

. ..
.

..

. ..
.

0; . . . . . . . . . . . . : :; 0; d0; d1; d2; . . . ; dm; 0
0; . . . . . . . . . . . . . . . : ; 0; d0; d1; d2; . . . ; dm
0; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; 0

..

. ..
.

0; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ; 0

2666666666666664

3777777777777775
�5�

(Properties of D and related matrices are summarized in Appendix 1.) Application of the
di�erencing matrix to model (3) permits direct estimation of the parametric e�ect. In particular,
take:

Dyt � Dft�xt� �DZtbt �Dvt �6�

Since the data have been reordered so that the x's are close, the application of the di�erencing
matrix D in model (6) removes the non-parametric e�ect in large samples. Under general
conditions, the OLS regression of Dyt on DZt exhibits the following large sample behaviour (see
Appendix 1 for further details):

b̂t � ��DZt�0DZt�ÿ1�DZt�0Dyt �
A
N bt; 1� 1

2m

� �
s2v
N

Sÿ1zjx

� �
�7a�

where Szjx � E�Cov�zjx�� is estimated consistently using

Ŝzjx �
1

N
�DZt�0DZt �7b�

4Hall et al. (1990) propose optimal weights for non-parametric di�erencing procedures. They claim that optimal
di�erencing weights are unique. In fact, as m increases, there is an increasing number of optimal di�erencing sequences
but only one which corresponds to an MA process with roots on or outside the unit circle. For the unique optimal
di�erencing weights satisfying the latter property see Yatchew (1998a, p. 697).
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the residual variance is estimated consistently using

s
2
v �

1

N
�Dyt ÿDZtb̂t�0�Dyt ÿDZtb̂t� �7c�

and the covariance matrix of the di�erencing estimator of b may be estimated using:

Ŝb̂t
� 1� 1

2m

� �
s2v
N
Ŝÿ1zjx �7d�

By increasing the order of di�erencing m, the estimator may be shown to be asymptotically
e�cient. In all applications of the di�erencing estimator, the principal requirement is that the
average distance between the values of the non-parametric variable x decline to zero su�ciently
quickly. (For details, see Yatchew, 1997.)

Linear restrictions of the form Rbt � r may be tested using the conventional statistic
�Rb̂t ÿ r�0�RŜb̂t

R0�ÿ1�Rb̂t ÿ r� which converges in distribution to a chi-square with degrees of
freedom equal to the rank of R.

3.2 Discussion of Empirical Results

Di�erencing estimates of the parametric component of the Full Model, equation (1), are
presented for the years 1993 to 1995 in Tables I(a)±(Ic). (Throughout the paper we use third-
order di�erencing (m � 3). Results for other orders of di�erencing were similar.) We do not ®nd
signi®cant statistical evidence against either the Homothetic Model or the Loglinear Models.
Focusing on the latter, the estimated wage e�ect is positive and moderately signi®cant while the
e�ect of pcap is positive and strongly signi®cant. The estimate of cost savings associated with
distributors that are part of a Public Utility Commission ranges from 7% to 10%. The level of per

Table I(a). Semiparametric analysis of total costsÐ1993

Variable

Full Model Homothetic Model Loglinear Model

Coef SE Coef SE Coef SE

wage 1.6303 13.883 1.5082 12.999 0.3543 0.3119
pcap ÿ3.5079 2.5194 ÿ2.0913 1.5894 0.5041 0.0676
1
2wage

2 ÿ3.7813 4.9276 ÿ2.2686 4.2613 Ð Ð
1
2pcap

2 0.1667 0.1636 0.0954 0.1320 Ð Ð
wage . pcap 0.7795 0.7067 0.4867 0.5791 Ð Ð
cust . wage 0.1298 0.1787 Ð Ð Ð Ð
cust . pcap ÿ0.0351 0.0479 Ð Ð Ð Ð
PUC ÿ0.0855 0.0386 ÿ0.0893 0.0384 ÿ0.0870 0.0378
kwh 0.0476 0.0841 0.0476 0.0841 0.0301 0.0838
life ÿ0.6002 0.1168 ÿ0.6099 0.1151 ÿ0.6265 0.1144
lf 0.5047 0.2256 0.5789 0.2036 0.6016 0.2019
kmwire 0.3573 0.0856 0.3593 0.0860 0.3690 0.0849
s2v 0.0184 0.0185 0.0193
R2 0.666 0.664 0.650

Test of Homothetic Model versus Full Model, w22 under H0 : 0
.54. Test of Loglinear Model versus Homothetic Model, w23

under H0 : 2
.77. Order of di�erencing m � 3.
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customer electricity sales (kwh) has a small and insigni®cant impact on costs. The remaining life

of assets (life) has a strong impact on costsÐ®rms with older plant experience substantially

higher costs. Higher load factors (lf ) evidently also result in signi®cantly higher costs. Utilities

with lower density and hence greater distances between customers (kmwire) have signi®cantly

higher costs. We note that estimates of non-price covariate e�ects exhibit little variation as one

moves from the Full Model to the Homothetic and Loglinear Models.

Table I(b). Semiparametric analysis of total costsÐ1994

Variable

Full Model Homothetic Model Loglinear Model

Coef SE Coef SE Coef SE

wage ÿ1.0949 13.4211 ÿ1.0005 12.4863 0.4726 0.2870
pcap ÿ1.6346 2.2463 ÿ1.1040 1.4690 0.6176 0.0608
1
2wage

2 ÿ1.2183 4.7920 ÿ0.6763 4.2536 Ð Ð
1
2pcap

2 0.0927 0.1433 0.0687 0.1205 Ð Ð
wage . pcap 0.4182 0.6630 0.3003 0.5457 Ð Ð
cust . wage 0.0457 0.1512 Ð Ð Ð Ð
cust . pcap ÿ0.0127 0.0407 Ð Ð Ð Ð
PUC ÿ0.1053 0.0349 ÿ0.1062 0.0348 ÿ0.1029 0.0335
kwh 0.0911 0.0739 0.0904 0.0735 0.0806 0.0718
life ÿ0.4848 0.0970 ÿ0.4879 0.0955 ÿ0.4930 0.0938
lf 0.3417 0.2040 0.3695 0.1834 0.3911 0.1795
kmwire 0.5433 0.0783 0.5439 0.0784 0.5485 0.0773
s2v 0.0149 0.0149 0.0152
R2 0.745 0.744 0.739

Test of Homothetic Model versus Full Model, w22 under H0 : 0
.54. Test of Loglinear Model versus Homothetic Model, w23

under H0 : 1
.42. Order of di�erencing m � 3.

Table I(c). Semiparametric analysis of total costsÐ1995

Variable

Full Model Homothetic Model Loglinear Model

Coef SE Coef SE Coef SE

wage 8.4377 14.5471 4.2684 13.6000 0.5745 0.2692
pcap 0.2941 2.2338 0.0118 1.4807 0.5012 0.0583
1
2wage

2 ÿ2.1468 5.0816 ÿ0.9708 4.5408 Ð Ð
1
2pcap

2 0.0588 0.1398 0.0593 0.1173 Ð Ð
wage . pcap ÿ0.1476 0.6621 ÿ0.0648 0.5520 Ð Ð
cust . wage 0.0438 0.1491 Ð Ð Ð Ð
cust . pcap ÿ0.0032 0.0398 Ð Ð Ð Ð
PUC ÿ0.0626 0.0349 ÿ0.0649 0.0348 ÿ0.0678 0.0329
kwh 0.0759 0.0724 0.0808 0.0720 0.0839 0.0689
life ÿ0.3397 0.0883 ÿ0.3494 0.0875 ÿ0.3584 0.0860
lf 0.3778 0.2040 0.3991 0.1851 0.3906 0.1788
kmwire 0.3850 0.0768 0.3836 0.0773 0.3798 0.0761
s2v 0.0149 0.0150 0.0151
R2 0.678 0.675 0.673

Test of Homothetic Model versus Full Model, w22 under H0 : 2
.14. Test of Loglinear Model versus Homothetic Model, w23

under H0 : 0
.34. Order of di�erencing m � 3.
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For comparison purposes we provide estimates of the parametric analogues of the models in
Tables II(a)±(c). These are the Translog, the Homothetic and the Loglinear Models where the
level of output cust (�log(CUST)) is modelled using a quadratic. Estimates of price e�ects di�er
substantially between parametric and semiparametric versions of the Full and Homothetic

Table II(a). Parametric analysis of total costsÐ1993

Variable

Full Translog Model Homothetic Model Loglinear Model

Coef SE Coef SE Coef SE

cust ÿ5.3264 1.9171 ÿ0.7776 0.1945 ÿ0.8567 0.1672
cust2 ÿ0.0269 0.0477 0.0776 0.0212 0.0860 0.0178
wage 52.6179 24.1400 3.0115 13.5428 0.6407 0.3037
pcap 1.7469 3.0096 ÿ1.3122 1.6537 0.5292 0.0686
1
2wage

2 ÿ19.3633 7.8971 ÿ2.5065 4.4294 Ð Ð
1
2pcap

2 ÿ0.0024 0.1641 0.0411 0.1351 Ð Ð
wage . pcap ÿ0.5685 0.8586 0.4449 0.5762 Ð Ð
cust . wage 1.5803 0.6246 Ð Ð Ð Ð
cust . pcap 0.0543 0.0584 Ð Ð Ð Ð
PUC ÿ0.0859 0.0370 ÿ0.0841 0.0381 ÿ0.0821 0.0366
kwh 0.0239 0.0825 0.0152 0.0856 0.0020 0.0828
life ÿ0.5147 0.1166 ÿ0.6036 0.1154 ÿ0.6097 0.1124
lf 0.2737 0.2359 0.5735 0.2044 0.5742 0.2009
kmwire 0.3196 0.0856 0.3915 0.0836 0.3989 0.0814
s2v 0.0194 0.0210 0.0214
R2 0.647 0.620 0.613

Test of Homothetic Model versus Full Model, w22 under H0 : 6
.43. Test of Loglinear Model versus Homothetic Model, w23

under H0 : 0
.32.

Table II(b). Parametric analysis of total costsÐ1994

Variable

Full Translog Model Homothetic Model Loglinear Model

Coef SE Coef SE Coef SE

cust ÿ2.6463 1.7335 ÿ0.6746 0.1785 ÿ0.7226 0.1546
cust2 0.0229 0.0414 0.0644 0.0195 0.0700 0.0164
wage 18.7046 23.4773 ÿ3.9877 13.6240 0.7541 0.2875
pcap 1.1019 2.7553 ÿ0.1492 1.5490 0.6270 0.0637
1
2wage

2 ÿ6.8931 7.5552 0.6182 4.6111 Ð Ð
1
2pcap

2 0.0012 0.1517 0.0015 0.1277 Ð Ð
wage . pcap ÿ0.2313 0.8290 0.2408 0.5446 Ð Ð
cust . wage 0.6800 0.5496 Ð Ð Ð Ð
cust . pcap 0.0214 0.0532 Ð Ð Ð Ð
PUC ÿ0.1102 0.0357 ÿ0.1088 0.0358 ÿ0.1028 0.0337
kwh 0.0430 0.0763 0.0429 0.0770 0.0309 0.0734
life ÿ0.4354 0.1056 ÿ0.4856 0.0987 ÿ0.4777 0.0954
lf 0.2725 0.2154 0.3948 0.1894 0.4127 0.1845
kmwire 0.5233 0.0813 0.5499 0.0790 0.5526 0.0767
s2v 0.0176 0.0179 0.0180
R2 0.698 0.693 0.691

Test of Homothetic Model versus Full Model, w22 under H0 : 1
.56. Test of Loglinear Model versus Homothetic Model, w23

under H0 : 0
.02.
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Models. This is perhaps not surprising given the low precision with which they are estimated.
However, estimates of non-price covariate e�ects are similar. The R2, which we de®ne as
R2 � 1ÿ s2v=s

2
y is 2±5% higher in the semiparametric speci®cations relative to the pure

parametric ones.
Returning to our semiparametric speci®cation, we may now remove the estimated parametric

e�ect from the dependent variable and analyse the non-parametric e�ect. In particular, for
purposes of the tests below, the approximation yit ÿ zitb̂t � zit�bt ÿ b̂t�� ft�xit� � vit � ft�xit� � vit
does not alter the large sample properties of the procedures.

We use the estimates of the Loglinear Model to remove the parametric e�ect. Figure 1 displays
the ordered pairs �yit ÿ zitb̂t; xit� as well as kernel estimates of ft bordered by 95% uniform
con®dence bands. Quadratic estimates of scale e�ects are also illustrated. Parametric null
hypotheses may be tested against non-parametric alternatives using the statistic:

�mN�1=2 s
2
res ÿ s2v
s2v

!D N�0; 1� under H0 �8�

where s2res is the estimate of the residual variance from the parametric regression and s2v is the
di�erencing estimate from model (7c) above.5 (For details see Yatchew, 1997, Proposition 2.) If
we insert a constant function for f then the procedure constitutes a test of signi®cance of the scale
variable x against a non-parametric alternative. The resulting statistics range from 8.15 to 10.09
indicating a strong e�ect of output on unit costs, that is, a strong scale e�ect. Next we test a
quadratic model for output. The resulting test statistics vary from 1.68 to 2.86, suggesting that the
quadratic model is likely inadequate even though the quadratic estimates lie within the

Table II(c). Parametric analysis of total costsÐ1995

Variable

Full Translog Model Homothetic Model Loglinear Model

Coef SE Coef SE Coef SE

cust ÿ1.5286 1.4527 ÿ0.6918 0.1750 ÿ0.6802 0.1495
cust2 0.0522 0.0336 0.0670 0.0191 0.0656 0.0159
wage 13.1980 21.7723 2.1635 14.3457 0.7147 0.2721
pcap 0.2027 2.4039 0.5519 1.5228 0.5067 0.0606
1
2wage

2 ÿ5.4914 7.3342 ÿ0.9339 4.8095 Ð Ð
1
2pcap

2 0.0092 0.1451 ÿ0.0353 0.1226 Ð Ð
wage . pcap 0.1020 0.7190 0.1186 0.5373 Ð Ð
cust . wage 0.3696 0.4807 Ð Ð Ð Ð
cust . pcap ÿ0.0148 0.0449 Ð Ð Ð Ð
PUC ÿ0.0781 0.0356 ÿ0.0814 0.0356 ÿ0.0814 0.0328
kwh 0.0566 0.0741 0.0620 0.0736 0.0624 0.0693
life ÿ0.3586 0.0915 ÿ0.3798 0.0889 ÿ0.3782 0.0867
lf 0.2927 0.2135 0.3888 0.1877 0.3860 0.1820
kmwire 0.3907 0.0779 0.4015 0.0769 0.4067 0.0752
s2v 0.0173 0.0175 0.0176
R2 0.625 0.621 0.620

Test of Homothetic Model versus Full Model, w22 under H0 : 0
.87. Test of Loglinear Model versus Homothetic Model, w23

under H0 : 0
.04.

5 Statistic (8) may also be used to test non-parametric null hypotheses such as monotonicity or concavity. In these cases,
s2res may be obtained from an isotonic regression.
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Figure 1. Single-equation analysis of total cost dataÐnon-parametric component
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asymptotic 95% con®dence bands. Keeping in mind that (8) is a one-sided test, one would reject
the parametric translog in favour of the semiparametric translog at the 5% level in each of the
three years.

4. PANEL DATA ANALYSIS

4.1 Basic Setup

The availability of several years of data permits us to assess the stability of parametric e�ects over
time as well as the stability of the non-parametric scale e�ect. The testing of these hypotheses will
be the two main objectives of our panel data analysis. Recall that our basic model is given by
yit � zitbt � ft�xit� � vit. We now elaborate the assumptions about the residual:

vit � ui � "it �9�

where, conditional on the x's, E�ui� � 0, Var�ui� � s2u, E�u4i � � Zu, E�"it� � 0, Var�"it� � s2" ,
E"4it � Z", Cov�"it; "is� � 0 for s 6� t, Cov�ui; "it� � 0 for all t. De®ne u0 � �u1; . . . ; uN�0Ðthe
subscript 0 is intended to connote that individuals are endowed with these e�ects at birth. We also
assume that ��yi1; xi1�; . . . ; �yiT; xiT�� is independent of ��yj1; xj1�; . . . ; �yjT; xjT�� for i 6� j.

As before, let vt � �v1t; . . . ; vNt�0 be the N-dimensional column vector of residuals during
period t and v � �v01; . . . ; v0T�0 the NT-dimensional concatenation of these column vectors. De®ne
", x and y in a similar way. Then v � "� iT 
 u0 and Cov�v� � s2"INT � s2u�1T 
 IN�. Given T
years of data, we write our model as:

y1
y2
..
.

yT

0BBB@
1CCCA �

f1�x1�
f2�x2�

..

.

fT�xT�

0BBB@
1CCCA�

Z1 0 0 . . . 0
0 Z2 0 . . . 0

..

. ..
. ..

. ..
. ..

.

0 0 0 0 ZT

0BBB@
1CCCA

b1
b2
..
.

bT

0BBB@
1CCCA�

v1
v2
..
.

vT

0BBB@
1CCCA �10�

y � f �x� � Zb � v

where, as before, ft�xt�0 � � ft�x1t�; . . . ; ft�xNt��.
Unfortunately, the presence of individual e�ects will require us to carefully keep track of how

data have been reordered. By convention, we will assume that in period 1, data are already
ordered so that the x's are in increasing order. Data in all subsequent periods are initially in the
same order as the data in the ®rst period. This, of course, does not ensure that their
corresponding x's are `close', but it does ensure that the corresponding individual e�ects are in
the same position in each year. We will need permutation matrices to reorder data and quadratic
forms to estimate variances. To denote permutation matrices we will use P usually with a
subscript and Q will denote matrices used in the construction of quadratic forms.

For each period t, de®ne Pt to be the N�N permutation matrix which reorders the data within
the period so that x's are in increasing order. Our above convention implies P1 is the identity
matrix. De®ne Pw , the NT�NT `within' permutation matrix, to be the block diagonal
permutation matrix with diagonal blocks P1; . . . ;PT. When applied to data stacked across all
periods, it reorders so that corresponding x's are close within each period. Thus if x� � Pwx then
x�1t 4 � � � 4 x�Nt for each t. De®ne Pp the `pooled' permutation matrix to be the matrix which
reorders data so that the x's are close regardless of which period they are in.
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We transform the stacked model (10) by applying �IT 
D�Pw which yields:

DP1y1
DP2y2

..

.

DPTyT

0BBBB@
1CCCCA �

DP1f1�x1�
DP2f2�x2�

..

.

DPTfT�xT�

0BBBB@
1CCCCA�

DP1Z1 0 0 . . . 0

0 DP2Z2 0 . . . 0

..

. ..
. ..

. ..
. ..

.

0 0 . . . . . . DPTZT

0BBBB@
1CCCCA

b1
b2

..

.

bT

0BBBB@
1CCCCA�

DP1v1
DP2v2

..

.

DPTvT

0BBBB@
1CCCCA

�IT 
D�Pwy � �IT 
D�Pw f �x� � �IT 
D�PwZb� �IT 
D�Pwv �11�

The OLS estimator applied to these reordered, di�erenced and stacked data:

b̂ � �Z0P0w�IT 
D
0
D�PwZ�ÿ1Z0P0w�IT 
D

0
D�Pwy �12�

is identical to the estimator in equation (7a) applied equation by equation. However, its
asymptotic covariance matrix must account for correlations between residuals over time arising
out of the individual speci®c e�ect:

Sb̂ � �Z0P0w�IT 
D
0
D�PwZ�ÿ1Z0P0w�IT 
D

0
D�Pw

� �s2"INT � s2u�IT 
 IN�� � P0w�IT 
D
0
D�PwZ�Z0P0w�IT 
D

0
D�PwZ�ÿ1

�13�

and thus requires consistent estimation of s2u and s2" . We will need an estimate of Sb̂ to perform
tests on the parametric component of the model. Estimates of s2u and s2" will also be used to test
the stability of the non-parametric e�ect.

4.2 Estimation of Variance Components and a Test of Equality of Regression Functions

To simplify exposition, suppose that the parametric e�ect has been removed from the dependent
variable, so that equation (10) becomes:

y � f �x� � v �14�

Applying the `within' permutation matrix and di�erencing yields:

�IT 
D�Pwy � �IT 
D�Pwf �x� � �IT 
D�Pwv �15�

To estimate s2v � s2u � s2" de®ne Qv � P0w�IT 
D0D�Pw and

s
2
v �

1

NT
y
0
Qvy �16�

To estimate s2u de®ne Qu � P0w�IT 
D0�Pw��1T ÿ IT� 
 IN�P0w�IT 
D�Pw and suppose
p̂u !

P
pu > 0;where

p̂u �
1

NT�Tÿ 1� tr�iT 
 IN�0Qu�iT 
 IN�
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Let

s
2
u �

1

tr�iT 
 IN�0Qu�iT 
 IN�
y
0
Quy �

1

NT�Tÿ 1�
1

p̂u
y
0
Quy �17�

Reordering within periods and applying the di�erencing estimator removes the regression e�ect
in large samples so that we have �IT 
D�Pwy � �IT 
D�Pwv. Thus the quadratic forms used to
estimate s2v and s2u are approximately v0Qvv and v0Quv respectively. To gain some intuition on how
these quadratic forms yield estimates of the corresponding variances, suppose we are using ®rst-
order di�erencing. A typical term in v0Qvv will be of the form

1
2�v�it ÿ v�iÿ1t�2 � 1

2�u�i � "�it ÿ u�iÿ1 ÿ
"�iÿ1t�2 the expectation of which is s2v � s2u � s2" . (Asterisks denote reordered data.)

Consider now the quadratic form v0Quv. After reordering and di�erencing, (that is, after
applying �IT 
D�Pw�, we apply P0w, the inverse of the reordering matrix Pw . This realigns the data
so that within each period, the ith ®rm forms part of the (di�erenced) ith observation.
Interposing the matrix �1T ÿ IT� 
 IN takes covariances of di�erenced residuals across periods.
For ®rst-order di�erencing, a typical term in v0Quv is given by 1

2�vis ÿ v�iÿ1s��vit ÿ v��iÿ1t� �
1
2�ui � "is ÿ u�iÿ1 ÿ "�iÿ1s��ui � "it ÿ u��iÿ1 ÿ "��iÿ1t� where single and double asterisks indicate
reordering within periods s and t respectively. Thus the expectation of a typical term is
1
2�s2u � Eu�iÿ1u

��
iÿ1� which equals s2u if the same ®rm precedes the ith ®rm in each of the two

reorderings and 1
2s

2
u otherwise. Dividing by tr�iT 
 IN�0Qu�iT 
 IN� ensures that these con-

sequences of reordering are properly taken into account when estimating s2u.
For purposes of testing equality of regression functions, we will also want to use a statistic

based on the pooled reordered data. Let Qp � P0p�IT 
D0D�Pp and de®ne:

s
2
p �

1

NT
y
0
Qpy �18�

Proposition 1 establishes consistency of s2v , s
2
u and s2p. Proofs may be found in Appendix 1.

Proposition 1: (a) s2v !
P

s2v ; (b) Suppose p̂u !
P

pu > 0; then s
2
u !

P
s2u; (c) Suppose

p̂p � tr�i0T 
 IN�Qp�iT 
 IN�=NT !P pp and all regression functions are identical, then
s2p !

P
s2" � pps

2
u: j

Proposition 1 implies consistent estimation of s2" � s2v ÿ s2u. In order to construct a test of
equality of regression functions we will also need consistent estimates of the fourth-order
moments Zu , Z" .

Proposition 2: Let d0 � 1=
���
2
p

, d1 � ÿ1=
���
2
p

be the usual ®rst-order di�erencing weights andD the
corresponding ®rst di�erencing matrix. De®ne

Ẑu �
2

NT�Tÿ 1�
X
s 6�t
�P0sDPsys � P

0
sDPsys�0�P0tDPtyt � P

0
tDPtyt� ÿ 4s

2
us

2
" ÿ 3p̂us

4
u ÿ 2s

4
"

 !�
p̂u

Ẑ" �
2

NT

X
t

�P0tDPtyt � P
0
tDPtyt�0�P0tDPtyt � P

0
tDPtyt� ÿ Ẑu ÿ 12s

2
us

2
" ÿ 3s

4
u ÿ 3s

4
"

 !
�19�

where P1; . . . ;PT are the N�N permutation matrices that make up the diagonal blocks of Pw .
Then Ẑu !

P
Zu and Ẑ" !

P
Z": j
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Proposition 3: De®ne

QU � Qp ÿQv �
1ÿ p̂p
�Tÿ 1�p̂u

Qu �20�

and �QU � �iT 
 IN�0QU�iT 
 IN�. Let

U � y0QUy

�NT�1=2 � �NT�1=2�s2p ÿ s
2
v � �1ÿ p̂p�s2u� �21�

Then under the null hypothesis that all regression functions are identical U=sU !
D

N�0; 1� where

s
2
U � �Ẑ" ÿ 3s

4
"�trQU �QU=NT � s

4
"2trQUQU=NT

� �Ẑu ÿ 3s
4
u�tr �QU � �QU=NT� s

4
u2tr

�QU
�QU=NT

� s
2
"s

2
u4tr�iT 
 IN�0QUQU�iT 
 IN�=NT j

�22�

Before we apply these procedures to our cost data, we consider two polar cases for the data
generating mechanism of the x's.

Example 1: for each i, xit are perfectly correlated over time. In this case, Pw � INT,
Qu � �1T ÿ IT� 
D0D and p̂u�: 1. The matrix Pp interleaves the data so that the ®rst T
observations correspond to the ®rst ®rm, the next T to the second ®rm and so on. Thus with ®rst-
order di�erencing, p̂p � 1=T and hence s2p! s2" � �1=T �s2u since di�erencing pooled data
removes individual e�ects for all observations except those which are preceded by an observation
corresponding to a di�erent ®rm. In the empirical application in this paper, ®rm size is highly
(though not perfectly) correlated over time so that individual electrical utilities have their
observations clustered in the pooled data-set.

Example 2: xit are independent over time. Reorderings within each period and in the pooled
data are random. With ®rst-order di�erencing, p̂u! d2

0 � 1
2 since the ®rm that is `closest' to ®rm i

in one period is unlikely to be `closest' in another period. Furthermore p̂p ! 1 since individual
e�ects will rarely be di�erenced out in the pooled data.

4.3 Empirical Results

We begin by obtaining estimates of the variance components s2u and s2" . Using equation (12) (or
equivalently (7a) applied equation by equation ), we estimate b, where the Z matrix contains the
explanatory variables corresponding to the Loglinear Model. Replacing y with yÿ Zb̂ in
equations (16) and (17) we obtain s2v � 0�0170, s2u � 0�0145 and by subtraction s2" � 0�0025. Thus,
about 85% of the variance of the residual is attributable to the individual speci®c e�ect. To test
constancy of parametric e�ects over time, we insert our estimate of the covariance matrix (13)
into the conventional asymptotic chi-square statistic for testing linear restrictions. Our Loglinear
Model involves seven regression parameters for each year (see e.g. Table I(a)). Thus a test of
equality of regression coe�cients over time should be approximately w214 under the null. We
obtain a value of 63.18, indicating rejection. Casual comparison of Loglinear Model estimates
contained in Tables I(a)±(c) would suggest that they are not too di�erent. However, since the
residuals are dominated by a ®rm-speci®c e�ect and the explanatory variables are highly
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Figure 2. Estimation of non-parametric componentÐpooled data
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correlated over time, coe�cient estimates are also highly correlated over time. As a result, even
small di�erences are statistically signi®cant.

Next, we apply the test of equality of non-parametric regression functions in Proposition 3.
The standardized statistic has a standard normal distribution under the null hypothesis. Our
value is 0.139, indicating that the null cannot be rejected. Figure 2 provides kernel and spline
estimates of the non-parametric scale e�ect using all three years of data where the estimated
parametric e�ects have been removed using the Loglinear Model. It also illustrates the estimated
scale economies as a function of the number of customers. Evidently minimum e�cient scale
is achieved by ®rms with approximately 20,000 customers. Unit costs appear ¯at or increase
slightly for larger ®rms with the exception of the largest distributor, which has much higher unit
costs.

5. CONCLUSIONS

A central objective of this paper has been to estimate scale economies of electricity distribution
under relatively weak functional form assumptions. We have done this by implementing variants
of the translog cost function where outputÐwhich in our case is the number of customers
servedÐenters non-parametrically, while other variables are parametric. Our tests do not reject
homotheticity or linearity in the logs of factor prices. Formal testing rejects the parametric
translog in favour of its semiparametric counterpart (equation (1)). Our estimates indicate that
minimum e�cient scale in Ontario is achieved by utilities with about 20,000 customers. Those
utilities which also participated in the delivery of other municipal services had costs that were 7±
10% lower, suggesting the presence of economies of scope.

It may be useful to compare our ®ndings to those of other studies. For comparison purposes,
we reiterate that our utilities range in size from about 600 to 220,000 customers while sales range
from 14 gwh to over 9000 gwh. Giles and Wyatt (1993) analyse data on 60 distributors in New
Zealand ranging in size from less than 2000 to over 200,000 customers (Auckland)Ða range that
is quite comparable to that under study in this paper. Output ranges from about 17 gwh to about
3400 gwh. Giles and Wyatt (1993, p. 378) state that `. . . any output in the range 500±3500 gwh is
essentially consistent with minimum AC'. We have subsequently accessed New Zealand
distributor data and found that the implied minimum e�cient scale corresponds to utilities with
about 30,000 customers.

In their analysis of 100 Norwegian distributors, Salvanes and Tjotta (1994, p. 35) ®nd that `. . .
optimal size comprises plants serving about 20,000 customers and is relatively independent of the
level of gwh produced'. Indeed, they also conclude that larger ®rms exhibit modest decreasing
returns to scale. The ®rms under analysis in the Norwegian study range in size from 655 to
290,560 customers while output ranges from about 11 gwh to 7500 gwh. (See also Salvanes and
Tjotta, 1998.) Thus, both the Norwegian and New Zealand results are quite consistent with ours.

Filippini (1996, 1997) analyses 39 Swiss distributors and ®nds increasing returns to scale
throughout his sample. While customer data is apparently not contained in his studies, Filippini
de®nes small utilities to be those with output of about 73 gwh and large utilities to have output of
about 300 gwh. Thus, Filippini's `large utilities' are smaller than those which achieve minimum
e�cient scale in the Giles and Wyatt study. Comparisons with Salvanes and Tjotta and the
current study are somewhat more tenuous because per capita electricity consumption is
substantially higher in Norway and Canada. Nevertheless, it would appear that the `large
utilities' Filippini studies are substantially smaller than the large utilities in the Norwegian and

202 A. YATCHEW

Copyright # 2000 John Wiley & Sons, Ltd. J. Appl. Econ. 15: 187±210 (2000)



Ontario data.6 Thus, Filippini's ®ndings of increasing returns to scale throughout his sample may
not be inconsistent with the other studies.

The results of our study suggest that horizontal mergers between distributors are not likely to
produce substantial scale economies in the operation of their usual wires business. There are likely
to be substantial economies in power procurement, a function which has not been previously
performed by most Ontario distributors because the preponderance of electricity has been
supplied on an `as required' basis by Ontario Hydro, the main generator. In Ontario, current
restructuring initiatives separate the wires businessÐwhich is a natural monopoly and would be
regulatedÐ from electricity supply, which would be deregulated. On the other hand, since
regulation of the wires business will continue, the presence of a number of distributors within one
jurisdiction would help to mitigate the informational asymmetries which encumber the regulator.
For example, a larger comparison group would improve the regulator's ability to use techniques
such as frontier production function estimation and data envelopment analysis to estimate best
practices.7

APPENDIX 1

Properties of Permutation and Di�erencing Matrices

Permutation matrices P have exactly one `1' in every row and column and zeros elsewhere. They
are closed under matrix multiplication and Pÿ1 � P0. Furthermore, trP, trPP, trP�P are all
4dim P. For an arbitrary matrix B, P0BP shu�es but otherwise does not alter the diagonal
elements of B. (For notation, see last paragraph of Section 2. For more on permutation and
related matrices, see Magnus, 1988.)

We may de®ne a more general class of matrices as those that have at most one `1' in every row
and column and 0's elsewhere. Such matrices are also closed under multiplication and G0 is the
pseudo-inverse where G is any general permutation matrix; trG, trGG, trG�G are all 4dim G.
Suppose G is of dimension NT�NT, and de®ne �G � �i0T 
 IN�G�iT 
 IN�. Then sup �G4T,
tr �G4TN, tr �G� �G4T2N, tr �G �G4T2N.

Within the set of general permutation matrices are the lag matrices. Suppose i4 0 and de®ne
L0i to have 0's everywhere except on the ith diagonal above the main diagonal where it has 1's. If
i5 0, L0i has 1's on the ith diagonal below the main diagonal. L0 is de®ned to be the usual identity
matrix, L0i � Lÿi and LiLj�: Li�j.

Optimal di�erencing weights have the property Sjdjdj�k � ÿ1=2m, k � 1; . . . ;m (see Hall et al.,
1990). Given the order of di�erencing m, the di�erencing matrix D may be written as
D � d0L0 � d1L

0
1 � � � � � dmL

0
m. Thus, D is a ®nite linear combination of general permutation

matrices as are D0D, DD0, D0DD0D, DG and D0G where G is any general permutation matrix. The
matrix D0D has a symmetric band structure with (except for end e�ects), ones on the main
diagonal, ÿ1/2m on the m adjacent diagonals and zeros elsewhere. That is, D0D�: L0ÿ
�1=2m��L1 � L01 � � � �Lm � L0m� so that tr�D0D� �: N. The matrix D0DD0D has a symmetric band

6Per capita annual electricity consumption in Switzerland and New Zealand are quite comparable at 7346 and 8865 kwh
per year respectively. For Norway and Canada the ®gures are 24,033 and 16,413 kwh. (Source: International Energy
Agency, http://www.iea.org/stat.htm, 1996 data.)
7Green and Jackson (1994) use frontier production function techniques to analyse distributor data in the United
Kingdom, but their data-set consists of only 12 observations.
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structure with 1 � 1/2m on the main diagonal so that tr�D0DD0D� �: N�1� 1=2m�. The ®rst m
diagonals adjacent to the main diagonal take the value:

ÿ 1

m
� j

1

4m2

j � 2mÿ 2; 2mÿ 3; . . . ;mÿ 1. The next m diagonals take the value: j�1=4m2�; j � m;
mÿ 1; . . . ; 1. The remainder of the matrix is 0.

Throughout the paper, traces divided by N converge in probability by virtue of our assump-
tions on the data-generating mechanisms for the x's. (In Section 3, Single Equation Analysis xit is
independent of xjs if i 6� j or s 6� t. In Section 4, Panel Data Analysis, �xi1; . . . ; xiT� is independent
of �xj1; . . . ; xjT� if i 6� j.)

Asymptotic Distribution of Di�erencing Estimator

In the following, brief justi®cation is provided for equation (7a). (For expositional purposes, the
`t' subscript is dropped.) See also Yatchew (1997, 1998a, pp. 670±2, 694±9).

Using equation 6 note that since di�erencing removes the non-parametric e�ect f we have
Dy � DZb�Dv. Next, write Z � g�X� �U where g is a smooth vector function of conditional
means of each parametric explanatory variable given the non-parametric variable; g(X) is an
N� k matrix whose ith row contains the components of g evaluated at xi . Since di�erencing
removes g, DZ � DU. Note that U0U=n !P Szjx: Now

b̂ � ��DZ�0DZ�ÿ1�DZ�0Dy � b� ��DU�0DU�ÿ1�DU�0Dv

hence

Cov�n1=2�b̂ÿ b�� � s2v
U0D0DU

n

� �ÿ1
U0D0DD0DU

n

� �
U0D0DU

n

� �ÿ1
Since D0D has (except for end e�ects) ones on the main diagonal, U0D0DU=n !P Szjx.
Furthermore, since D0DD0D has (except for end e�ects) 1 � 1/2m on the main diagonal
U0D0DD0DU=n !P �1� 1=2m�Szjx. Thus

Cov�n1=2�b̂ÿ b�� !P s2v 1� 1

2m

� �
Sÿ1zjx

Lemma 1: De®ne the NT-dimensional stacked vector v as in equation (10) with Cov�v� �
s2"INT � s2u�1T 
 IN�. Let Q be an NT�NT symmetric matrix, �Q � �iT 
 IN�0Q�iT 
 IN�. Then
E�v0Qv� � s2"trQ� s2utr �Q and

Var�v0Qv� � �Z" ÿ 3s4"�trQ�Q� s4"2trQQ

� �Zu ÿ 3s4u�tr �Q� �Q� s4u2tr �Q �Q

� s2"s
2
u4tr�iT 
 IN�0QQ�iT 
 IN� j
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Comment on Lemma 1: Lemma 1 can be used to calculate asymptotic variances of the
quadratic forms in s2v , s

2
u and s2p as well as of test statistic U in Proposition 3. To prove Lemma 1 we

will use the following. Suppose # � �#1; . . . ; #x�0 where E#i � 0, Var�#i� � s2#, E#
4
i � Z# and #

has covariance matrix s2#Ix. If A is a symmetric matrix, then E�#0A#� � s2#trA and
Var�#0A#� � �Z# ÿ 3s4#�trA� A� s4#2trAA. For results of this type see e.g. Schott (1997) or
they may be proved directly. j

Proof of Lemma 1: Rewrite v0Qv � "0Q"� u0Qu� 2"0Qu � "0Q"� u00 �Qu0 � 2"0Qu where
u � iT 
 u0 and u0 � �u1; . . . ; uN�0 contains the individual e�ects with which individuals are
endowed at birth. Note that the three terms in the expansion are mutually uncorrelated. Using
the Comment above obtain E�"0Q"� and E�u00 �Qu0�. Collect terms to obtain E�v0Qv�. Again
referring to the Comment above, calculate Var�"0Q"� and Var�u00 �Qu0�. Note that
Var�"0Qu� � E�u0Q""0Qu� � s2"Eu�u0QQu� � s2"s

2
utr�i0T 
 IN�QQ�iT 
 IN�. Collect terms to obtain

Var�v0Qv�. j

Lemma 2: Suppose �xi; "i�; i � 1; . . . ; x are i.i.d. The xi have density bounded away from zero on
the unit interval and "ijxi � �0; s2"�. Assume data have been reordered so that x1 4 � � � 4 xx.
De®ne ~f � � f �x1�; . . . ; f �xx��0 where the function f has a bounded ®rst derivative. Let D be a
di�erencing matrix of, say, order m. Then ~f 0D0D ~f � OP�xÿ1�d� and Var� ~f 0D0D"� � OP�xÿ1�d�
where d is positive and arbitrarily close to 0. j

Proof of Lemma 2: The results follow immediately from Yatchew (1997, Appendix, equations
(A.2 and (A.3)). j

Lemma 3: Let GN be a sequence of N�N general permutation matrices such that trGN/N and
trGNGN/N converge in probability to constants l and g respectively. Let #i � �0; s2#� be i.i.d.
random variables with ®nite fourth-moment Z# and de®ne # � �#1; . . . ; #N�0. Then

N
1=2 1

N
#0GN#ÿ

s2#
N

trGN

� �
!D N�0; l�Z# ÿ 3s4#� � g2s4#�

Proof of Lemma 3: Rewrite GN � LN � GN where LN is a diagonal matrix (with 1's and 0's on the
diagonal) and GN which has 0's on the main diagonal. Note that #0LN# and #0GN# are
uncorrelated. Since trLN=N � trGN=N !

P
l we have

N
1=2 1

N
#0LN#ÿ

s2#
N

trGN

� �
!D N�0; l�Z# ÿ s4#��

Next, note that the eigenvalues of GN are bounded in absolute value by 1 and that each row of GN

contains at most one non-zero element (which equals 1). Further,

trGNGN=N !
P

gÿ l

We may now apply de Jong (1987, Theorem 5.2) to conclude that

N
1=2 #

0GN#

N
!D N�0; 2�gÿ l�s4#�

and the result of Lemma 3 follows immediately. j
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Comments on Lemma 3: Suppose P is a permutation matrix. Then

P
0
D
0
DP�: L0 ÿ

1

2m
�P0L1P� P

0
L
0
1P� � � � � P

0
LmP� P

0
L
0
mP�

Note that P0LiP and PL0iP are matrices of the form used in the quadratic form of Lemma 3 since
each is a (general) permutation matrix. More generally, let PA , PB be (general) permutation
matrices and consider:

P
0
AD
0
DPB�: P0AL0PB ÿ

1

2m
�P0AL1PB � P

0
AL
0
1PB � � � � � P

0
ALmPB � P

0
AL
0
mPB�

which is a weighted combination of matrices that satisfy the form used in the quadratic form of
Lemma 3 since P0ALiPB and P0AL

0
iPB are (general) permutation matrices.

Similarly, by straightforward expansion and regrouping of terms, it can be shown that

P0AD
0PAP

0
BDPB and P0BD

0PBP
0
ADPA can be rewritten as a weighted sum of matrices of the form

used in the quadratic form of Lemma 3. j

Proof of Proposition 1: In the following we make use of the above `Properties of Permutations and
Di�erencing Matrices'.

Consistency of s2v : trQv�: NT and tr �Qv�: NT where �Qv � �i0T 
 IN�Qv�iT 
 IN�. Note that
trQv �Qv, trQvQv, tr

�Qv � �Qv, tr
�Qv

�Qv and tr�iT 
 IN�0QvQv�iT 
 IN� are O(N). Apply Lemma 2
to conclude that s2v ÿ v0Qvv=NT !P 0. Apply Lemma 1 to conclude that E�v0Qvv�=NT�: s2v and

that Var�v0Qvv� � O�N�. Hence Var�s2v� ! 0 and the estimator is consistent.

Consistency of s2p: trQp�: NT and tr �Qp � NTp̂p where �Qp � �i0T 
 IN�Qp�iT 
 IN� so that
conditional on the x's, E�v0Qpv=NT� �: s2" � p̂ps

2
u. Note that trQp � Qp, trQpQp, tr �Qp � �Qp,

tr �Qp
�Qp and tr�iT 
 IN�0QpQp�iT 
 IN� areO(N). Now follow the above proof of consistency of s2v .

Consistency of s2u: Qu has diagonal elements 0, thus trQu � trQu �Qu � 0. Write
�Qu � �i0T 
 IN�Qu�iT 
 IN� � Ss 6�tP

0
sD
0PsP

0
tDPt where P1; . . . ;PT are the N�N permutation

matrices that make up the diagonal blocks of Pw . We have tr �Qu � NT�Tÿ 1�p̂u and conditional

on the x's E�v0Quv=�NT�Tÿ 1�p̂u���: s2u. Next, note that trQuQu � Ss 6�ttrP
0
sDD0PsP

0
tDD0Pt

tr �Qu � �Qu, tr �Qu
�Qu and tr�i0T 
 IN�QuQu�iT 
 IN� are O(N). Now follow the above proof of

consistency s2v. j

Proof of Proposition 2: Using arguments similar to Lemma 2 it can be shown that di�erencing
removes the nonparametric e�ect quickly enough so that

1

NT

X
t

�P0tDPtyt � P
0
tDPtyt�0�P0tDPtyt � P

0
tDPtyt� ÿ �P0tDPtvt � P

0
tDPtvt�0�P0tDPtvt � P

0
tDPtvt� !

P
0

1

NT�Tÿ 1�
X
s 6�t
�P0sDPsys � P

0
sDPsys�0�P0tDPtyt � P

0
tDPtyt� ÿ �P0sDPsvs � P

0
sDPsvs�0�P0tDPtvt � P

0
tDPtvt� !

P
0
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We will show that

1

NT

X
t

�P0tDPtvt � P
0
tDPtvt�0�P0tDPtvt � P

0
tDPtvt� !

P 1

2
Ze �

1

2
Z� � 6s2us

2
" �

3

2
s4u �

3

2
s4"

1

NT�Tÿ 1�
X
s 6�t
�P0sDPsvs � P

0
sDPsvs�0�P0tDPtvt � P

0
tDPtvt� !

P 1

2
puZu � 2s2us

2
" �

3

2
pus

4
u � s4"

�A1:1�
Existence of fourth-order moments of ui and "it is su�cient to ensure that the LHS of the above

equations converge to constants. To determine those constants, we need to compute certain
expectations. Rewrite P0tDPtvt � P0t�d0L0 � d1L

0
1�Ptvt � �vt � Atvt�=

���
2
p

noting that At � P0tL
0
1Pt

is a (general) permutation matrix with the important property that it has 0's on the diagonal.
Note also that Atvt � Atvt � At�vt � vt� and �vt � Atvt�0�vt � Atvt� � �vt � vt�0�Atvt � Atvt� �
�vt � vt�0At�vt � vt�.

De®ne Zv � Ev4it � Zu � 6s2us
2
" � Z" and note that �Ev2it�2 � �s2u � s2"�2 � s4u � 2s2"s

2
u � s4" .

Consider

E�P0tDPtvt � P
0
tDPtvt�0�P0tDPtvt � P

0
tDPtvt�

� 1
4E�vt � vt � 2vt � Atvt � At�vt � vt��0�vt � vt � 2vt � Atvt � At�vt � vt��

�A1:2�

which can be expanded and the expectations evaluated term by term. The non-zero terms are:

(i) E�vt � vt�0�vt � vt� � NEv4it
(ii) E�vt � vt�0At�vt � vt� �: N�Ev2it�2
(iii) E4�vt � Atvt�0�vt � Atvt� � E4�vt � vt�0�Atvt � Atvt� �: N4�Ev2it�2
(iv) E�vt � vt�0A0tAt�vt � vt� �: E�vt � vt�0�vt � vt� � NEv4it

Now collect terms to conclude that, except for `end e�ects', equation (A1.2) equals

1
4N�2�Zu � 6s2us

2
" � Z"� � 6�s4u � 2s2us

2
" � s4"�� � N�12Zu � 1

2Z" � 6s2us
2
" � 3

2s
4
u � 3

2s
4
" �

Next, for s 6� t consider

E�P0sDPsvs � P
0
sDPsvs�0�P0tDPtvt � P

0
tDPtvt�

� 1
4E�vs � vs � 2vs � Asvs � As�vs � vs��0�vt � vt � 2vt � Atvt � At�vt � vt��

�A1:3�

which can be expanded and expectations evaluated term by term. The non-zero terms are:

(i) E�vs � vs�0�vt � vt� � E�u0 � u0 � 2u0 � "s � "s � "s�0�u0 � u0 � 2u0 � "t � "t � "t�
� N�Zu � 2s2us

2
" � s4"�

(ii) E�vs � vs�0At�vt � vt� �: N�s4u � 2s2"s
2
u � s4"�

(iii) E4�vs � Asvs�0�vt � Atvt� � 4E�u0 � Asu0�0�u0 � Atu0� � 4E�u0 � u0�0�Asu0 � Atu0�
� 4s4utrA

0
sAt

(iv) E�vs � vs�0A0s�vt � vt� �: N�s4u � 2s2"s
2
u � s4"�

(v) E�vs � vs�0A0sAt�vt � vt� � E�u0 � u0 � 2u0 � "s � "s � "s�0A0sAt�u0 � u0 � 2u0 � "t � "t � "t�
�: N�ZutrA0sAt=N� s4u�1ÿ trA0sAt=N� � 2s2us

2
" � s4"�
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Now collect terms to conclude that, except for end e�ects, equation (A1.3) equals

1

4
N Zu 1� trA0sAt

N

� �
� 3s4u 1� trA0sAt

N

� �
� 8s2us

2
" � 4s4"

� �
Note that 1� trA0sAt=N � 2trP0sD

0PsP
0
tDPt=N and that p̂u � trSs 6�tP

0
sD
0PsP

0
tDPt=NT�Tÿ 1�.

Thus we have shown that equation (A1.1) holds.
Using equation (A1.1) we may now conclude that

Zu � plim
2

NT�Tÿ 1�
X
s6�t
�P0sDPsys � P

0
sDPsys�0�P0tDPtyt � P

0
tDPtyt�

 !
ÿ 4s2us

2
" ÿ 3pus

4
u ÿ 2s4"

 !�
pu

Z" � plim
2

NT

X
t

�P0tDPtyt � P
0
tDPtyt�0�P0tDPtyt � P

0
tDPtyt�

 !
ÿ Zu ÿ 12s2us

2
" ÿ 3s4u ÿ 3s4"

Replacing quantities on the right-hand sides with consistent estimates yields consistent estimators
of Zu and Z" . j

Proof of Proposition 3: Using Lemma 2, conclude that �NT�1=2�s2v ÿ v0Qvv=NT� !P 0,
�NT�1=2�s2p ÿ v0Qpv=NT� !P 0, �NT�1=2�s2u ÿ v0Quv=�puNT�Tÿ 1��� !P 0 in which case using
equation (21) we may conclude that �Uÿ v0QUv=�NT�1=2� !P 0.

Rewrite v0Qvv, v
0Qpv and v0Quv as ®nite weighted combinations of terms of the form "0tG"t,

u00Gu0, "
0
sG"t and u00G"t where G is a general permutation matrix of dimension N�N (see

comments following Lemma 3 above). The number of such terms depends on T andm but not on
N. Now apply Lemma 3 to terms of the ®rst and second type. For terms of the form "0sG"t and
u00G"t note that since G has at most one `1' in each row and column, such terms are sums of
independent random variables so that a conventional CLT may be applied. Using equation (20)
conclude that v0QUv=�NT�1=2 and hence y0QUy=�NT�1=2 are asymptotically normal. Recall
trQv�: NT, trQp�: NT and Qu has diagonal elements 0. Hence, conditional on the x's,
E�v0QUv=�NT�1=2� � trQU=�NT�1=2�: 0. Using Lemma 1, Var�v0QUv=�NT�1=2� may be calculated.
Replacing various moments with consistent estimates yields equation (22). j
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