SCALE ECONOMIES IN ELECTRICITY DISTRIBUTION: A SEMIPARAMETRIC ANALYSIS

A. YATCHEW*
Department of Economics, University of Toronto, 150 St George Street, Toronto, Canada M5S 3G7

Abstract

SUMMARY We estimate the costs of distributing electricity using data on municipal electric utilities in Ontario, Canada for the period 1993-5. The data reveal substantial evidence of increasing returns to scale with minimum efficient scale being achieved by firms with about 20,000 customers. Larger firms exhibit constant or decreasing returns. Utilities which deliver additional services (such as water/sewage), have significantly lower costs, indicating the presence of economies of scope. Our basic specifications comprise semiparametric variants of the translog cost function where output enters non-parametrically and remaining variables (including their interactions with output) are parametric. We rely upon non-parametric differencing techniques and extend a previous differencing test of equality of non-parametric regression functions to a panel data setting. Copyright © 2000 John Wiley \& Sons, Ltd.

1. INTRODUCTION

In various parts of the world electricity industries have been undergoing restructuring. The main driver has been a fundamental change in the economics of generating electricity. As a result of low natural gas prices and improved gas turbine technology, minimum efficient scale has fallen dramatically in this segment of the industry so that competitive markets in generation can be established. Transmission and distribution of electricity, however, continue to be natural monopolies. Ownership of such facilities conveys considerable market power and thus continues to attract regulatory oversight.

The structure and ownership of electricity industry varies. In many jurisdictions, all stages of the electricity production process - generation, transmission and distribution - are dominated by a single vertically integrated firm which may be privately or publicly owned. In others, distinct firms subsume varying combinations of these functions. For example, a number of jurisdictions have multiple generating companies some of which also own transmission and distribution. Only a few jurisdictions have many distribution companies.

In this paper we focus on the economics of distributing electricity. While there are many empirical studies which analyse the electricity industry as a whole or the generation segment specifically, there are precious few (we will reference them momentarily) which deal principally with distribution. There are three reasons for this. First, many regulatory jurisdictions have too few distinct entities engaged in distribution to permit serious statistical analysis. Second, interjurisdictional comparisons are difficult because of varying accounting practices and differing definitions of distribution (which is usually defined by the voltage at which power is taken from the transmission system). Third, where distribution is part of a vertically integrated utility - and this is frequently the case - a clear and comparable separation of distribution costs from those of other stages of production is typically not available.

[^0]The data we examine do not suffer from these difficulties. Our analysis involves 81 municipal distributing utilities in Ontario, Canada, ranging in size from about 600 to 220,000 customers. Accounts are kept on a uniform basis as prescribed by the regulator, thus facilitating comparability in empirical work. Almost all power delivered by these utilities is purchased from Ontario Hydro, the dominant provincial generator - very few are involved in self-generation or ownership of transmission facilities.

Three recent studies examine electricity distribution costs in detail. Giles and Wyatt (1993) estimate a total cost function for 60 distributors in New Zealand. Salvanes and Tjotta (1994) estimate a variable cost function for 100 Norwegian distributors. Both of these studies are crosssectional. Filippini $(1996,1997)$ estimates both variable and total cost functions using panel data on 39 Swiss distributors for the period 1987-91. All the above studies find evidence of scale economies in the distribution of electricity, though for New Zealand and Norway, minimum efficient scale occurs at surprisingly small levels of operation. ${ }^{1}$

In this paper we estimate total cost functions where total costs ($T C$) consist of operations and maintenance ($O M$), billing/collection/administration ($B C A$), depreciation ($D E P$) and interest (INT) costs. While each of the above three studies include the cost of power in their dependent variable, we exclude this component in order to focus exclusively on the distribution service provided by the utility. The cost of power, which includes generation and transmission, dominates distribution costs (in Ontario by a factor of more than $5: 1$), thus even small percentage errors in its measurement could substantially reduce the accuracy of estimates of distribution cost parameters. In Ontario, the prices paid for this power are established through a quasi-regulatory process. Volume discounts on power purchases are not available. Thus, one would not expect any significant scale economies in the power procurement function of these utilities, adding justification to our analysis of pure distribution costs. We find substantial evidence of increasing returns to scale with minimum efficient scale being achieved by firms with about 20,000 customers. Larger firms exhibit constant or decreasing returns. Utilities which deliver additional services (46% of the utilities under study provide other municipal services such as water/sewage) have lower costs, indicating the presence of economies of scope.

Our basic specifications are variants of the translog cost function where output enters nonparametrically while remaining variables (including their interaction with output) enter in a parametric fashion. Section 2 describes the model and provides additional details about the data. Section 3 uses single-equation differencing techniques to analyse costs. Section 4 outlines differencing estimation of variance components, extends a previous differencing test of equality of non-parametric regression functions (Yatchew, 1998b) to this setting and reports results of tests applied to the panel data. For an alternative test procedure see Baltagi et al. (1996). The concluding Section 5 compares our results to those of previous studies.

2. MODEL AND DATA

During the period of our analysis there were approximately 300 municipal distributing utilities in Ontario. We use the 81 utilities for which the most complete data exist. Since data tend to be missing for small utilities, our truncated data-set actually represents over 70% of the municipal

[^1]distributor customer base. In 1995, Ontario municipal distributors purchased about 90 twh of electricity at $6.5 \not \subset / \mathrm{kwh}$. (Throughout the paper, monetary amounts are in Canadian dollars.) The electricity was sold to end-users at an average price of about $7.6 \phi / \mathrm{kwh}$. Thus total municipal distributor revenues were about $\$ 1$ billion after subtracting the cost of power. Variable costs which consist of $O M$ plus $B C A$ costs represent about 52% of this amount (with $O M$ and $B C A$ costs taking 27% and 25% shares respectively). Depreciation and interest expense represent 25% and 3%, (collectively, these utilities have very low debt). The remaining 20% of revenues flows to net income.

Our main empirical objective is to estimate scale economies of delivering electricity. A priori, the relationship between firm size and unit costs may be flat, increasing, decreasing or U-shaped; it may be concave or it may have multiple inflection points. We propose therefore to estimate the scale effect using a semiparametric model.

In addition to the level of output, a number of variables may influence costs and therefore need to be incorporated into the model. These covariates include the conventional arguments of cost functions - the price of labour which we measure by the hourly wage (WAGE) of linemen of identical grade; and the price of capital ($P C A P$), which we measure by dividing accumulated gross investment in plant and facilities (TOTPLANT) by total kilometres of distribution wire (KMWIRE).

We also include a series of covariates which reflect differences among utilities. Since the level of service to a 'typical' customer will in general influence costs, we include the total quantity of electricity delivered per customer ($K W H / C U S T$). The remaining lifetime of assets (LIFE) is included to allow for vintage effects - for example, one might expect older capital to require more maintenance. Load factor $(L F)$ - which measures capacity utilization relative to peak usage - is included since high load factor utilities require greater expenditures in order to maintain reliability. There is considerable variation in the density of customers across utilities. To capture this effect, we divide the total kilometres of distribution wire by the number of customers (KMWIRE/CUST). One would expect higher costs, the greater the distance between customers.

About 46% of our distributors (37 of 81) are part of local Public Utility Commissions (PUCs) which deliver additional services such as water and sewage removal. The regulator requires that costs of the various services be separated as far as possible and provides detailed accounting rules for this purpose (see Ontario Hydro, 1995). Although operations are indeed separate, other functions (e.g. billing and collection) are performed on a shared basis and each service is allocated a pro rata share of costs. Thus, one would expect PUCs to exhibit some cost savings. One of our objectives will be to assess whether this is indeed the case.

Our basic econometric specification is given by:

$$
\begin{align*}
\log (\text { TC/CUST })= & f(\log (C U S T)) \\
& +\beta_{1} \log (\text { WAGE })+\beta_{2} \log (\text { PCAP }) \\
& +\frac{1}{2} \beta_{11} \log ^{2}(\text { WAGE })+\frac{1}{2} \beta_{22} \log ^{2}(\text { PCAP })+\beta_{12} \log (\text { WAGE }) \log (\text { PCAP }) \tag{1}\\
& +\beta_{31} \log (C U S T) \log (\text { WAGE })+\beta_{32} \log (\text { CUST }) \log (\text { PCAP }) \\
& +\beta_{4} P U C+\beta_{5} \log (\text { KWH/CUST })+\beta_{6} \log (\text { LIFE })+\beta_{7} \log (\text { LF }) \\
& +\beta_{8} \log (\text { KMWIRE } / \text { CUST })+v
\end{align*}
$$

We assume little about the function f beyond smoothness, thus, equation (1) is a translog cost function, with the output variable (CUST) entering both non-parametrically (through f) and
parametrically (through the interaction terms between output and the price variables). It is readily verified that if these interaction terms are zero (i.e. $\beta_{31}=\beta_{32}=0$) then the cost function is homothetic. The model has a partial linear structure $y=f(x)+z \beta+v$ where the non-parametric variable x is $\log (C U S T)$ and the vector z is composed of the various price and other variables which enter parametrically. We adopt the notational convention that lower-case italicized names represent transformed variables in logarithmic form, e.g. $k w h=\log (K W H / C U S T)$. For convenient reference variable definitions and summary statistics are contained in Appendix 2.

The partial linear structure is amenable to some particularly simple 'differencing' techniques because the parametric and non-parametric portions of the model are additively separable. The essential idea is to reorder the data so that the values of the non-parametric variable are 'close', then to take first- or higher-order differences to remove the non-parametric effect. We will avail ourselves of this device extensively in this paper. ${ }^{2}$

When applying the differencing procedures used in this paper, the first few observations may be treated differently or lost. ${ }^{3}$ For the mathematical arguments below, such effects are negligible. Thus, we will use the symbol \doteq to denote 'equal except for end effects'. In the panel data portion of the paper, asymptotics are on N (the number of observations in each period) with T (the number of time periods) fixed. Throughout, $I_{N}, I_{T}, I_{N T}$ will denote identity matrices of dimension N, T and $N * T$ respectively, l_{T} will be a $T \times 1$ column vector of ones, $1_{T}=l_{T} l_{T}^{\prime}$ a T-dimensional square matrix of ones. We use the abbreviations $t r$ for trace, dim for dimension. $A \odot B$ is the matrix whose $i j$ th entry is $A_{i j} B_{i j}$.

3. SINGLE-EQUATION ANALYSIS

3.1 Basic Setup and Differencing Procedures

Our model may be written in the form:

$$
\begin{equation*}
y_{i t}=f_{t}\left(x_{i t}\right)+z_{i t} \beta_{t}+v_{i t} \tag{2}
\end{equation*}
$$

where $t=1,2,3$ for the years $1993-5$ and $i=1, \ldots, N$ indexes utilities. Throughout the paper, the non-parametric variable $x_{i t}$ is a scalar.

Let $y_{t}=\left(y_{1 t}, \ldots, y_{N t}\right)^{\prime}$ be the N-dimensional column vector of the values of the dependent variable in year t. Define $x_{t}=\left(x_{1 t}, \ldots, x_{N t}\right)^{\prime}$ and $v_{t}=\left(v_{1 t}, \ldots, v_{N t}\right)^{\prime}$ in a similar fashion. We assume that for fixed t, the residuals are distributed independently and homoscedastically across firms. For each firm, the k-dimensional row vector $z_{i t}$ contains data on the parametric variables and we define the $N \times k$ matrix $Z_{t}=\left(z_{1 t}^{\prime}, \ldots, z_{N t}^{\prime}\right)^{\prime}$. We emphasize that for purposes of this section, the data have already been ordered so that within each year, the x 's are in increasing order, i.e. $x_{1 t} \leqslant \cdots \leqslant x_{N t}, t=1,2,3$. In matrix notation, we write our model as:

$$
\begin{equation*}
y_{t}=f_{t}\left(x_{t}\right)+Z_{t} \beta_{t}+v_{t} \tag{3}
\end{equation*}
$$

where $f_{t}\left(x_{t}\right)^{\prime}=\left(f_{t}\left(x_{1 t}\right), \ldots, f_{t}\left(x_{N t}\right)\right)$.

[^2]Let m be the order of differencing and $d_{0}, d_{1}, \ldots, d_{m}$ the optimal differencing weights. ${ }^{4}$ The weights satisfy the conditions:

$$
\begin{equation*}
\sum_{j=0}^{m} d_{j}=0 \quad \sum_{j=0}^{m} d_{j}^{2}=1 \tag{4}
\end{equation*}
$$

The first condition ensures that differencing removes the non-parametric effect as sample size increases and the x 's become close, (see equation (6) below). The second condition is a normalization which implies that the residuals in the differenced equation (6) have the same variance as those in the original equation (3). Define the differencing matrix:
(Properties of D and related matrices are summarized in Appendix 1.) Application of the differencing matrix to model (3) permits direct estimation of the parametric effect. In particular, take:

$$
\begin{equation*}
D y_{t}=D f_{t}\left(x_{t}\right)+D Z_{t} \beta_{t}+D v_{t} \tag{6}
\end{equation*}
$$

Since the data have been reordered so that the x 's are close, the application of the differencing matrix D in model (6) removes the non-parametric effect in large samples. Under general conditions, the OLS regression of $D y_{t}$ on $D Z_{t}$ exhibits the following large sample behaviour (see Appendix 1 for further details):

$$
\begin{equation*}
\hat{\beta}_{t}=\left[\left(D Z_{t}\right)^{\prime} D Z_{t}\right]^{-1}\left(D Z_{t}\right)^{\prime} D y_{t} \stackrel{A}{\sim} N\left(\beta_{t},\left(1+\frac{1}{2 m}\right) \frac{\sigma_{v}^{2}}{N} \Sigma_{z \mid x}^{-1}\right) \tag{7a}
\end{equation*}
$$

where $\Sigma_{z \mid x}=E[\operatorname{Cov}(z \mid x)]$ is estimated consistently using

$$
\begin{equation*}
\hat{\Sigma}_{z \mid x}=\frac{1}{N}\left(D Z_{t}\right)^{\prime} D Z_{t} \tag{7b}
\end{equation*}
$$

[^3]the residual variance is estimated consistently using
\[

$$
\begin{equation*}
s_{v}^{2}=\frac{1}{N}\left(D y_{t}-D Z_{t} \hat{\beta}_{t}\right)^{\prime}\left(D y_{t}-D Z_{t} \hat{\beta}_{t}\right) \tag{7c}
\end{equation*}
$$

\]

and the covariance matrix of the differencing estimator of β may be estimated using:

$$
\begin{equation*}
\hat{\Sigma}_{\hat{\beta}_{t}}=\left(1+\frac{1}{2 m}\right) \frac{s_{v}^{2}}{N} \hat{\Sigma}_{z \mid x}^{-1} \tag{7d}
\end{equation*}
$$

By increasing the order of differencing m, the estimator may be shown to be asymptotically efficient. In all applications of the differencing estimator, the principal requirement is that the average distance between the values of the non-parametric variable x decline to zero sufficiently quickly. (For details, see Yatchew, 1997.)

Linear restrictions of the form $R \beta_{t}=r$ may be tested using the conventional statistic $\left(R \hat{\beta}_{t}-r\right)^{\prime}\left(R \hat{\Sigma}_{\hat{\beta}_{t}} R^{\prime}\right)^{-1}\left(R \hat{\beta}_{t}-r\right)$ which converges in distribution to a chi-square with degrees of freedom equal to the rank of R.

3.2 Discussion of Empirical Results

Differencing estimates of the parametric component of the Full Model, equation (1), are presented for the years 1993 to 1995 in Tables I(a)-(Ic). (Throughout the paper we use thirdorder differencing $(m=3)$. Results for other orders of differencing were similar.) We do not find significant statistical evidence against either the Homothetic Model or the Loglinear Models. Focusing on the latter, the estimated wage effect is positive and moderately significant while the effect of pcap is positive and strongly significant. The estimate of cost savings associated with distributors that are part of a Public Utility Commission ranges from 7% to 10%. The level of per

Table I(a). Semiparametric analysis of total costs - 1993

Variable	Full Model		Homothetic Model		Loglinear Model	
	Coef	SE	Coef	SE	Coef	SE
wage	1.6303	13.883	1.5082	12.999	0.3543	0.3119
pcap	-3.5079	$2 \cdot 5194$	-2.0913	$1 \cdot 5894$	$0 \cdot 5041$	$0 \cdot 0676$
$\frac{1}{2}$ wage 2	-3.7813	4.9276	-2.2686	$4 \cdot 2613$	-	-
$\frac{1}{2} p^{1} a p^{2}$	$0 \cdot 1667$	0.1636	0.0954	0.1320	-	-
wage \cdot pcap	0.7795	0.7067	0.4867	$0 \cdot 5791$	-	-
cust \cdot wage	0.1298	$0 \cdot 1787$	-	-	-	-
cust \cdot pcap	-0.0351	$0 \cdot 0479$	-	-	-	-
PUC	-0.0855	$0 \cdot 0386$	-0.0893	$0 \cdot 0384$	-0.0870	$0 \cdot 0378$
kwh	0.0476	$0 \cdot 0841$	0.0476	$0 \cdot 0841$	$0 \cdot 0301$	$0 \cdot 0838$
life	-0.6002	0.1168	-0.6099	$0 \cdot 1151$	-0.6265	$0 \cdot 1144$
lf	0.5047	$0 \cdot 2256$	0.5789	$0 \cdot 2036$	$0 \cdot 6016$	$0 \cdot 2019$
kmwire	$0 \cdot 3573$	$0 \cdot 0856$	0.3593	$0 \cdot 0860$	$0 \cdot 3690$	$0 \cdot 0849$
s_{v}^{2}	$0 \cdot 0184$		$0 \cdot 0185$		$0 \cdot 0193$	
R^{2}	$0 \cdot 666$		$0 \cdot 664$		$0 \cdot 650$	

Test of Homothetic Model versus Full Model, χ_{2}^{2} under $H_{0}: 0.54$. Test of Loglinear Model versus Homothetic Model, χ_{3}^{2} under $\mathrm{H}_{0}: 2 \cdot 77$. Order of differencing $m=3$.

Table I(b). Semiparametric analysis of total costs — 1994

Variable	Full Model		Homothetic Model		Loglinear Model	
	Coef	SE	Coef	SE	Coef	SE
wage	-1.0949	13.4211	-1.0005	12.4863	0.4726	0.2870
pcap	-1.6346	$2 \cdot 2463$	$-1 \cdot 1040$	1.4690	$0 \cdot 6176$	0.0608
$\frac{1}{2}$ wage 2	-1.2183	4.7920	-0.6763	$4 \cdot 2536$	-	-
$\frac{1}{2} p a^{2} p^{2}$	$0 \cdot 0927$	$0 \cdot 1433$	0.0687	$0 \cdot 1205$	-	-
wage \cdot pcap	0.4182	$0 \cdot 6630$	$0 \cdot 3003$	$0 \cdot 5457$	-	-
cust . wage	$0 \cdot 0457$	$0 \cdot 1512$	-	-	-	-
cust - pcap	-0.0127	0.0407	-	-	-	-
PUC	-0.1053	$0 \cdot 0349$	-0.1062	0.0348	-0.1029	0.0335
kwh	0.0911	0.0739	0.0904	0.0735	0.0806	0.0718
life	-0.4848	0.0970	-0.4879	0.0955	-0.4930	0.0938
lf	$0 \cdot 3417$	$0 \cdot 2040$	0.3695	$0 \cdot 1834$	0.3911	$0 \cdot 1795$
kmwire	$0 \cdot 5433$	$0 \cdot 0783$	$0 \cdot 5439$	$0 \cdot 0784$	$0 \cdot 5485$	0.0773
s_{v}^{2}	0.0149		0.0149		0.0152	
R^{2}	0.745		0.744		0.739	

Test of Homothetic Model versus Full Model, χ_{2}^{2} under $\mathrm{H}_{0}: 0 \cdot 54$. Test of Loglinear Model versus Homothetic Model, χ_{3}^{2} under $\mathrm{H}_{0}: 1 \cdot 42$. Order of differencing $m=3$.

Table I(c). Semiparametric analysis of total costs - 1995

Variable	Full Model		Homothetic Model		Loglinear Model	
	Coef	SE	Coef	SE	Coef	SE
wage	8.4377	14.5471	$4 \cdot 2684$	13.6000	0.5745	0.2692
pcap	$0 \cdot 2941$	2.2338	0.0118	1.4807	$0 \cdot 5012$	0.0583
$\frac{1}{2}$ wage 2	-2.1468	5.0816	-0.9708	4.5408	-	-
$\frac{1}{2} p a^{2}{ }^{2}$	$0 \cdot 0588$	$0 \cdot 1398$	$0 \cdot 0593$	$0 \cdot 1173$	-	-
wage \cdot pcap	-0.1476	$0 \cdot 6621$	-0.0648	$0 \cdot 5520$	-	-
cust \cdot wage	$0 \cdot 0438$	$0 \cdot 1491$	-	-	-	-
cust \cdot pcap	-0.0032	0.0398	-	-	-	-
PUC	-0.0626	0.0349	-0.0649	$0 \cdot 0348$	-0.0678	0.0329
kwh	0.0759	0.0724	$0 \cdot 0808$	$0 \cdot 0720$	0.0839	0.0689
life	-0.3397	$0 \cdot 0883$	-0.3494	$0 \cdot 0875$	-0.3584	0.0860
lf	$0 \cdot 3778$	$0 \cdot 2040$	$0 \cdot 3991$	$0 \cdot 1851$	$0 \cdot 3906$	$0 \cdot 1788$
kmwire	$0 \cdot 3850$	$0 \cdot 0768$	$0 \cdot 3836$	$0 \cdot 0773$	$0 \cdot 3798$	0.0761
s_{v}^{2}						
R^{2}						

Test of Homothetic Model versus Full Model, χ_{2}^{2} under $\mathrm{H}_{0}: 2 \cdot 14$. Test of Loglinear Model versus Homothetic Model, χ_{3}^{2} under $\mathrm{H}_{0}: 0 \cdot 34$. Order of differencing $m=3$.
customer electricity sales ($k w h$) has a small and insignificant impact on costs. The remaining life of assets (life) has a strong impact on costs - firms with older plant experience substantially higher costs. Higher load factors ($l f$) evidently also result in significantly higher costs. Utilities with lower density and hence greater distances between customers (kmwire) have significantly higher costs. We note that estimates of non-price covariate effects exhibit little variation as one moves from the Full Model to the Homothetic and Loglinear Models.

For comparison purposes we provide estimates of the parametric analogues of the models in Tables II(a)-(c). These are the Translog, the Homothetic and the Loglinear Models where the level of output cust $(=\log ($ CUST $)$) is modelled using a quadratic. Estimates of price effects differ substantially between parametric and semiparametric versions of the Full and Homothetic

Table II(a). Parametric analysis of total costs - 1993

Variable	Full Translog Model		Homothetic Model		Loglinear Model	
	Coef	SE	Coef	SE	Coef	SE
cust	-5.3264	1.9171	-0.7776	$0 \cdot 1945$	-0.8567	$0 \cdot 1672$
cust ${ }^{2}$	-0.0269	$0 \cdot 0477$	0.0776	$0 \cdot 0212$	$0 \cdot 0860$	$0 \cdot 0178$
wage	52.6179	24.1400	3.0115	13.5428	0.6407	0.3037
pcap	1.7469	3.0096	-1.3122	1.6537	$0 \cdot 5292$	$0 \cdot 0686$
$\frac{1}{2}$ wage 2	-19.3633	7.8971	-2.5065	4.4294	-	-
$\frac{1}{2} p^{2} a p^{2}$	-0.0024	$0 \cdot 1641$	0.0411	$0 \cdot 1351$	-	-
wage \cdot pcap	-0.5685	$0 \cdot 8586$	0.4449	$0 \cdot 5762$	-	-
cust - wage	1.5803	$0 \cdot 6246$	-	-	-	-
cust \cdot pcap	0.0543	$0 \cdot 0584$	-	-	-	-
PUC	-0.0859	$0 \cdot 0370$	-0.0841	$0 \cdot 0381$	-0.0821	0.0366
kwh	0.0239	0.0825	0.0152	$0 \cdot 0856$	$0 \cdot 0020$	$0 \cdot 0828$
life	-0.5147	$0 \cdot 1166$	-0.6036	$0 \cdot 1154$	-0.6097	0.1124
$l f$	0.2737	$0 \cdot 2359$	0.5735	$0 \cdot 2044$	0.5742	0.2009
kmwire	$0 \cdot 3196$	$0 \cdot 0856$	0.3915	$0 \cdot 0836$	$0 \cdot 3989$	0.0814
s_{v}^{2}	0.0194		$0 \cdot 0210$		0.0214	
R^{2}	$0 \cdot 647$		$0 \cdot 620$		$0 \cdot 613$	

Test of Homothetic Model versus Full Model, χ_{2}^{2} under $\mathrm{H}_{0}: 6 \cdot 43$. Test of Loglinear Model versus Homothetic Model, χ_{3}^{2} under $\mathrm{H}_{0}: 0.32$.

Table II(b). Parametric analysis of total costs - 1994

Variable	Full Translog Model		Homothetic Model		Loglinear Model	
	Coef	SE	Coef	SE	Coef	SE
cust	-2.6463	1.7335	-0.6746	$0 \cdot 1785$	-0.7226	$0 \cdot 1546$
cust ${ }^{2}$	$0 \cdot 0229$	$0 \cdot 0414$	$0 \cdot 0644$	$0 \cdot 0195$	0.0700	0.0164
wage	18.7046	23.4773	-3.9877	13.6240	0.7541	0.2875
pcap	$1 \cdot 1019$	2.7553	-0.1492	1.5490	$0 \cdot 6270$	0.0637
$\frac{1}{2}$ acae 2	-6.8931	7.5552	0.6182	4.6111	-	-
$\frac{1}{2} p^{2}$ cap 2	0.0012	$0 \cdot 1517$	0.0015	$0 \cdot 1277$	-	-
wage \cdot pcap	-0.2313	$0 \cdot 8290$	$0 \cdot 2408$	$0 \cdot 5446$	-	-
cust \cdot wage	$0 \cdot 6800$	0.5496	-	-	-	-
cust • pcap	$0 \cdot 0214$	$0 \cdot 0532$	-	-	-	-
PUC	$-0 \cdot 1102$	0.0357	-0.1088	0.0358	-0.1028	0.0337
kwh	0.0430	0.0763	0.0429	0.0770	0.0309	0.0734
life	-0.4354	$0 \cdot 1056$	-0.4856	0.0987	-0.4777	0.0954
$l f$	$0 \cdot 2725$	$0 \cdot 2154$	0.3948	$0 \cdot 1894$	0.4127	$0 \cdot 1845$
kmwire	0.5233	$0 \cdot 0813$	$0 \cdot 5499$	$0 \cdot 0790$	0.5526	0.0767
s_{v}^{2}	0.0176		0.0179		0.0180	
R^{2}	0.698		0.693		0.691	

Test of Homothetic Model versus Full Model, χ_{2}^{2} under $H_{0}: 1 \cdot 56$. Test of Loglinear Model versus Homothetic Model, χ_{3}^{2} under $\mathrm{H}_{0}: 0.02$.

Table II(c). Parametric analysis of total costs - 1995

Variable	Full Translog Model		Homothetic Model		Loglinear Model	
	Coef	SE	Coef	SE	Coef	SE
cust	-1.5286	1.4527	-0.6918	$0 \cdot 1750$	-0.6802	$0 \cdot 1495$
cust 2	0.0522	$0 \cdot 0336$	0.0670	0.0191	0.0656	0.0159
wage	13.1980	21.7723	$2 \cdot 1635$	14.3457	0.7147	0.2721
pcap	0.2027	$2 \cdot 4039$	0.5519	1.5228	$0 \cdot 5067$	0.0606
$\frac{1}{2}$ wage 2	-5.4914	7.3342	-0.9339	4.8095	-	-
${ }_{2}^{1} p$ cap ${ }^{2}$	0.0092	$0 \cdot 1451$	-0.0353	0.1226	-	-
wage . pcap	$0 \cdot 1020$	0.7190	$0 \cdot 1186$	0.5373	-	-
cust • wage	0.3696	$0 \cdot 4807$	-	-	-	-
cust pcap	-0.0148	$0 \cdot 0449$	-	-	-	
PUC	-0.0781	0.0356	-0.0814	0.0356	-0.0814	0.0328
kwh	0.0566	0.0741	0.0620	0.0736	0.0624	0.0693
life	-0.3586	0.0915	-0.3798	0.0889	-0.3782	0.0867
lf	$0 \cdot 2927$	0.2135	$0 \cdot 3888$	0.1877	$0 \cdot 3860$	$0 \cdot 1820$
kmwire	$0 \cdot 3907$	0.0779	0.0175		0.0176	
s_{v}^{2}	0.0173					
R^{2}	$0 \cdot 625$		0.621		0.620	

Test of Homothetic Model versus Full Model, χ_{2}^{2} under $\mathrm{H}_{0}: 0.87$. Test of Loglinear Model versus Homothetic Model, χ_{3}^{2} under $\mathrm{H}_{0}: 0.04$.

Models. This is perhaps not surprising given the low precision with which they are estimated. However, estimates of non-price covariate effects are similar. The R^{2}, which we define as $R^{2}=1-s_{v}^{2} / s_{y}^{2}$ is $2-5 \%$ higher in the semiparametric specifications relative to the pure parametric ones.

Returning to our semiparametric specification, we may now remove the estimated parametric effect from the dependent variable and analyse the non-parametric effect. In particular, for purposes of the tests below, the approximation $y_{i t}-z_{i t} \hat{\beta}_{t}=z_{i t}\left(\beta_{t}-\hat{\beta}_{t}\right)+f_{t}\left(x_{i t}\right)+v_{i t} \cong f_{t}\left(x_{i t}\right)+v_{i t}$ does not alter the large sample properties of the procedures.

We use the estimates of the Loglinear Model to remove the parametric effect. Figure 1 displays the ordered pairs $\left(y_{i t}-z_{i t} \hat{\beta}_{t}, x_{i t}\right)$ as well as kernel estimates of f_{t} bordered by 95% uniform confidence bands. Quadratic estimates of scale effects are also illustrated. Parametric null hypotheses may be tested against non-parametric alternatives using the statistic:

$$
\begin{equation*}
(m N)^{1 / 2} \frac{s_{r e s}^{2}-s_{v}^{2}}{s_{v}^{2}} \xrightarrow{D} N(0,1) \text { under } \mathrm{H}_{0} \tag{8}
\end{equation*}
$$

where $s_{\text {res }}^{2}$ is the estimate of the residual variance from the parametric regression and s_{v}^{2} is the differencing estimate from model (7c) above. ${ }^{5}$ (For details see Yatchew, 1997, Proposition 2.) If we insert a constant function for f then the procedure constitutes a test of significance of the scale variable x against a non-parametric alternative. The resulting statistics range from 8.15 to 10.09 indicating a strong effect of output on unit costs, that is, a strong scale effect. Next we test a quadratic model for output. The resulting test statistics vary from 1.68 to 2.86 , suggesting that the quadratic model is likely inadequate even though the quadratic estimates lie within the

[^4]

Figure 1. Single-equation analysis of total cost data - non-parametric component
asymptotic 95% confidence bands. Keeping in mind that (8) is a one-sided test, one would reject the parametric translog in favour of the semiparametric translog at the 5% level in each of the three years.

4. PANEL DATA ANALYSIS

4.1 Basic Setup

The availability of several years of data permits us to assess the stability of parametric effects over time as well as the stability of the non-parametric scale effect. The testing of these hypotheses will be the two main objectives of our panel data analysis. Recall that our basic model is given by $y_{i t}=z_{i t} \beta_{t}+f_{t}\left(x_{i t}\right)+v_{i t}$. We now elaborate the assumptions about the residual:

$$
\begin{equation*}
v_{i t}=u_{i}+\varepsilon_{i t} \tag{9}
\end{equation*}
$$

where, conditional on the x 's, $\mathrm{E}\left(u_{i}\right)=0, \operatorname{Var}\left(u_{i}\right)=\sigma_{u}^{2}, \mathrm{E}\left(u_{i}^{4}\right)=\eta_{u}, \mathrm{E}\left(\varepsilon_{i t}\right)=0, \operatorname{Var}\left(\varepsilon_{i t}\right)=\sigma_{\varepsilon}^{2}$, $E \varepsilon_{i t}^{4}=\eta_{\varepsilon}, \operatorname{Cov}\left(\varepsilon_{i t}, \varepsilon_{i s}\right)=0$ for $s \neq t, \operatorname{Cov}\left(u_{i}, \varepsilon_{i t}\right)=0$ for all t. Define $u_{0}=\left(u_{1}, \ldots, u_{N}\right)^{\prime}$ - the subscript 0 is intended to connote that individuals are endowed with these effects at birth. We also assume that $\left(\left(y_{i 1}, x_{i 1}\right), \ldots,\left(y_{i T}, x_{i T}\right)\right)$ is independent of $\left(\left(y_{j 1}, x_{j 1}\right), \ldots,\left(y_{j T}, x_{j T}\right)\right)$ for $i \neq j$.

As before, let $v_{t}=\left(v_{1 t}, \ldots, v_{N t}\right)^{\prime}$ be the N-dimensional column vector of residuals during period t and $v=\left(v_{1}^{\prime}, \ldots, v_{T}^{\prime}\right)^{\prime}$ the $N T$-dimensional concatenation of these column vectors. Define ε, x and y in a similar way. Then $v=\varepsilon+l_{T} \otimes u_{0}$ and $\operatorname{Cov}(v)=\sigma_{\varepsilon}^{2} I_{N T}+\sigma_{u}^{2}\left(1_{T} \otimes I_{N}\right)$. Given T years of data, we write our model as:

$$
\begin{align*}
\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{T}
\end{array}\right) & =\left(\begin{array}{c}
f_{1}\left(x_{1}\right) \\
f_{2}\left(x_{2}\right) \\
\vdots \\
f_{T}\left(x_{T}\right)
\end{array}\right)+\left(\begin{array}{ccccc}
Z_{1} & 0 & 0 & \ldots & 0 \\
0 & Z_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & Z_{T}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{T}
\end{array}\right)+\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{T}
\end{array}\right) \tag{10}\\
y & =f(x)+\quad \begin{array}{c}
v
\end{array}
\end{align*}
$$

where, as before, $f_{t}\left(x_{t}\right)^{\prime}=\left(f_{t}\left(x_{1 t}\right), \ldots, f_{t}\left(x_{N t}\right)\right)$.
Unfortunately, the presence of individual effects will require us to carefully keep track of how data have been reordered. By convention, we will assume that in period 1, data are already ordered so that the x 's are in increasing order. Data in all subsequent periods are initially in the same order as the data in the first period. This, of course, does not ensure that their corresponding x 's are 'close', but it does ensure that the corresponding individual effects are in the same position in each year. We will need permutation matrices to reorder data and quadratic forms to estimate variances. To denote permutation matrices we will use P usually with a subscript and Q will denote matrices used in the construction of quadratic forms.

For each period t, define P_{t} to be the $N \times N$ permutation matrix which reorders the data within the period so that x 's are in increasing order. Our above convention implies P_{1} is the identity matrix. Define P_{w}, the $N T \times N T$ 'within' permutation matrix, to be the block diagonal permutation matrix with diagonal blocks P_{1}, \ldots, P_{T}. When applied to data stacked across all periods, it reorders so that corresponding x 's are close within each period. Thus if $x^{*}=P_{w} x$ then $x_{1 t}^{*} \leqslant \cdots \leqslant x_{N t}^{*}$ for each t. Define P_{p} the 'pooled' permutation matrix to be the matrix which reorders data so that the x 's are close regardless of which period they are in.

A. YATCHEW

We transform the stacked model (10) by applying $\left(I_{T} \otimes D\right) P_{w}$ which yields:

$$
\begin{aligned}
\left(\begin{array}{c}
D P_{1} y_{1} \\
D P_{2} y_{2} \\
\vdots \\
D P_{T} y_{T}
\end{array}\right) & =\left(\begin{array}{c}
D P_{1} f_{1}\left(x_{1}\right) \\
D P_{2} f_{2}\left(x_{2}\right) \\
\vdots \\
D P_{T} f_{T}\left(x_{T}\right)
\end{array}\right)+\left(\begin{array}{ccccc}
D P_{1} Z_{1} & 0 & 0 & \ldots & 0 \\
0 & D P_{2} Z_{2} & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & \ldots & D P_{T} Z_{T}
\end{array}\right)\left(\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\vdots \\
\beta_{T}
\end{array}\right)+\left(\begin{array}{c}
D P_{1} v_{1} \\
D P_{2} v_{2} \\
\vdots \\
D P_{T} v_{T}
\end{array}\right) \\
\left(I_{T} \otimes D\right) P_{w} y & \left.=\left(I_{T} \otimes D\right) P_{w} f(x)+D\right) P_{w} Z \beta+\left(I_{T} \otimes D\right) P_{w} v
\end{aligned}
$$

The OLS estimator applied to these reordered, differenced and stacked data:

$$
\begin{equation*}
\hat{\beta}=\left(Z^{\prime} P_{w}^{\prime}\left(I_{T} \otimes D^{\prime} D\right) P_{w} Z\right)^{-1} Z^{\prime} P_{w}^{\prime}\left(I_{T} \otimes D^{\prime} D\right) P_{w} y \tag{12}
\end{equation*}
$$

is identical to the estimator in equation (7a) applied equation by equation. However, its asymptotic covariance matrix must account for correlations between residuals over time arising out of the individual specific effect:

$$
\begin{align*}
\Sigma_{\hat{\beta}}= & {\left[Z^{\prime} P_{w}^{\prime}\left(I_{T} \otimes D^{\prime} D\right) P_{w} Z\right]^{-1} Z^{\prime} P_{w}^{\prime}\left(I_{T} \otimes D^{\prime} D\right) P_{w} } \tag{13}\\
& \cdot\left[\sigma_{\varepsilon}^{2} I_{N T}+\sigma_{u}^{2}\left(I_{T} \otimes I_{N}\right)\right] \cdot P_{w}^{\prime}\left(I_{T} \otimes D^{\prime} D\right) P_{w} Z\left[Z^{\prime} P_{w}^{\prime}\left(I_{T} \otimes D^{\prime} D\right) P_{w} Z\right]^{-1}
\end{align*}
$$

and thus requires consistent estimation of σ_{u}^{2} and σ_{ε}^{2}. We will need an estimate of $\Sigma_{\hat{\beta}}$ to perform tests on the parametric component of the model. Estimates of σ_{u}^{2} and σ_{ε}^{2} will also be used to test the stability of the non-parametric effect.

4.2 Estimation of Variance Components and a Test of Equality of Regression Functions

To simplify exposition, suppose that the parametric effect has been removed from the dependent variable, so that equation (10) becomes:

$$
\begin{equation*}
y=f(x)+v \tag{14}
\end{equation*}
$$

Applying the 'within' permutation matrix and differencing yields:

$$
\begin{equation*}
\left(I_{T} \otimes D\right) P_{w} y=\left(I_{T} \otimes D\right) P_{w} f(x)+\left(I_{T} \otimes D\right) P_{w} v \tag{15}
\end{equation*}
$$

To estimate $\sigma_{v}^{2}=\sigma_{u}^{2}+\sigma_{\varepsilon}^{2}$ define $Q_{v}=P_{w}^{\prime}\left(I_{T} \otimes D^{\prime} D\right) P_{w}$ and

$$
\begin{equation*}
s_{v}^{2}=\frac{1}{N T} y^{\prime} Q_{v} y \tag{16}
\end{equation*}
$$

To ${ }_{P}$ estimate σ_{u}^{2} define $Q_{u}=P_{w}^{\prime}\left(I_{T} \otimes D^{\prime}\right) P_{w}\left(\left(1_{T}-I_{T}\right) \otimes I_{N}\right) P_{w}^{\prime}\left(I_{T} \otimes D\right) P_{w} \quad$ and \quad suppose $\hat{\pi}_{u} \xrightarrow{P} \pi_{u}>0$, where

$$
\hat{\pi}_{u}=\frac{1}{N T(T-1)} \operatorname{tr}\left(l_{T} \otimes I_{N}\right)^{\prime} Q_{u}\left(l_{T} \otimes I_{N}\right)
$$

Let

$$
\begin{equation*}
s_{u}^{2}=\frac{1}{\operatorname{tr}\left(l_{T} \otimes I_{N}\right)^{\prime} Q_{u}\left(l_{T} \otimes I_{N}\right)} y^{\prime} Q_{u} y=\frac{1}{N T(T-1)} \frac{1}{\hat{\pi}_{u}} y^{\prime} Q_{u} y \tag{17}
\end{equation*}
$$

Reordering within periods and applying the differencing estimator removes the regression effect in large samples so that we have $\left(I_{T} \otimes D\right) P_{w} y \cong\left(I_{T} \otimes D\right) P_{w} v$. Thus the quadratic forms used to estimate σ_{v}^{2} and σ_{u}^{2} are approximately $v^{\prime} Q_{v} v$ and $v^{\prime} Q_{u} v$ respectively. To gain some intuition on how these quadratic forms yield estimates of the corresponding variances, suppose we are using firstorder differencing. A typical term in $v^{\prime} Q_{v} v$ will be of the form $\frac{1}{2}\left(v_{i t}^{*}-v_{i-1 t}^{*}\right)^{2}=\frac{1}{2}\left(u_{i}^{*}+\varepsilon_{i t}^{*}-u_{i-1}^{*}-\right.$ $\left.\varepsilon_{i-1 t}^{*}\right)^{2}$ the expectation of which is $\sigma_{v}^{2}=\sigma_{u}^{2}+\sigma_{\varepsilon}^{2}$. (Asterisks denote reordered data.)

Consider now the quadratic form $v^{\prime} Q_{u} v$. After reordering and differencing, (that is, after applying $\left.\left(I_{T} \otimes D\right) P_{w}\right)$, we apply P_{w}^{\prime}, the inverse of the reordering matrix P_{w}. This realigns the data so that within each period, the i th firm forms part of the (differenced) i th observation. Interposing the matrix $\left(1_{T}-I_{T}\right) \otimes I_{N}$ takes covariances of differenced residuals across periods. For first-order differencing, a typical term in $v^{\prime} Q_{u} v$ is given by $\frac{1}{2}\left(v_{i s}-v_{i-1 s}^{*}\right)\left(v_{i t}-v_{i-1 t}^{* *}\right)=$ $\frac{1}{2}\left(u_{i}+\varepsilon_{i s}-u_{i-1}^{*}-\varepsilon_{i-1 s}^{*}\right)\left(u_{i}+\varepsilon_{i t}-u_{i-1}^{* *}-\varepsilon_{i-1 t}^{* *}\right)$ where single and double asterisks indicate reordering within periods s and t respectively. Thus the expectation of a typical term is $\frac{1}{2}\left(\sigma_{u}^{2}+E u_{i-1}^{*} u_{i-1}^{* *}\right)$ which equals σ_{u}^{2} if the same firm precedes the i th firm in each of the two reorderings and $\frac{1}{2} \sigma_{u}^{2}$ otherwise. Dividing by $\operatorname{tr}\left(l_{T} \otimes I_{N}\right)^{\prime} Q_{u}\left(l_{T} \otimes I_{N}\right)$ ensures that these consequences of reordering are properly taken into account when estimating σ_{u}^{2}.

For purposes of testing equality of regression functions, we will also want to use a statistic based on the pooled reordered data. Let $Q_{p}=P_{p}^{\prime}\left(I_{T} \otimes D^{\prime} D\right) P_{p}$ and define:

$$
\begin{equation*}
s_{p}^{2}=\frac{1}{N T} y^{\prime} Q_{p} y \tag{18}
\end{equation*}
$$

Proposition 1 establishes consistency of s_{v}^{2}, s_{u}^{2} and s_{p}^{2}. Proofs may be found in Appendix 1.
Proposition 1: (a) $s_{v}^{2} \xrightarrow{P} \sigma_{v}^{2} ; ~\left({ }_{P}^{(b)}\right.$ Suppose $\hat{\pi}_{u} \xrightarrow{P} \pi_{u}>0$, then $s_{u}^{2} \xrightarrow{P} \sigma_{u}^{2} ;$ (c) Suppose $\hat{\pi}_{p} \overline{\bar{P}} \operatorname{tr}\left(l_{T}^{\prime} \otimes I_{N^{2}}\right) Q_{p}\left(l_{T} \otimes I_{N}\right) / N T \xrightarrow{P} \pi_{p}$ and all regression functions are identical, then $s_{p} \xrightarrow{P} \sigma_{\varepsilon}^{2}+\pi_{p} \sigma_{u}$.

Proposition 1 implies consistent estimation of $\sigma_{\varepsilon}^{2}=\sigma_{v}^{2}-\sigma_{u}^{2}$. In order to construct a test of equality of regression functions we will also need consistent estimates of the fourth-order moments $\eta_{u}, \eta_{\varepsilon}$.
Proposition 2: Let $d_{0}=1 / \sqrt{2}, d_{1}=-1 / \sqrt{2}$ be the usual first-order differencing weights and D the corresponding first differencing matrix. Define

$$
\begin{align*}
& \hat{\eta}_{u}=\left(\frac{2}{N T(T-1)} \sum_{s \neq t}\left(P_{s}^{\prime} D P_{s} y_{s} \odot P_{s}^{\prime} D P_{s} y_{s}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} y_{t} \odot P_{t}^{\prime} D P_{t} y_{t}\right)-4 s_{u}^{2} s_{\varepsilon}^{2}-3 \hat{\pi}_{u} s_{u}^{4}-2 s_{\varepsilon}^{4}\right) / \hat{\pi}_{u} \\
& \hat{\eta}_{\varepsilon}=\left(\frac{2}{N T} \sum_{t}\left(P_{t}^{\prime} D P_{t} y_{t} \odot P_{t}^{\prime} D P_{t} y_{t}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} y_{t} \odot P_{t}^{\prime} D P_{t} y_{t}\right)-\hat{\eta}_{u}-12 s_{u}^{2} s_{\varepsilon}^{2}-3 s_{u}^{4}-3 s_{\varepsilon}^{4}\right) \tag{19}
\end{align*}
$$

where P_{1}, \ldots, P_{T} are the $N_{P} \times N$ permutation matrices that make up the diagonal blocks of P_{w}. Then $\hat{\eta}_{u} \rightarrow \eta_{u}$ and $\hat{\eta}_{\varepsilon} \rightarrow \eta_{\varepsilon}$.

Proposition 3: Define

$$
\begin{equation*}
Q_{\mathrm{r}}=Q_{p}-Q_{v}+\frac{1-\hat{\pi}_{p}}{(T-1) \hat{\pi}_{u}} Q_{u} \tag{20}
\end{equation*}
$$

and $\bar{Q}_{\mathrm{Y}}=\left(l_{T} \otimes I_{N}\right)^{\prime} Q_{\Upsilon}\left(l_{T} \otimes I_{N}\right)$. Let

$$
\begin{equation*}
\Upsilon=\frac{y^{\prime} Q_{\Upsilon} y}{(N T)^{1 / 2}}=(N T)^{1 / 2}\left(s_{p}^{2}-s_{v}^{2}+\left(1-\hat{\pi}_{p}\right) s_{u}^{2}\right) \tag{21}
\end{equation*}
$$

Then under the null hypothesis that all regression functions are identical $\Upsilon / s_{\mathrm{Y}} \xrightarrow{D} N(0,1)$ where

$$
\begin{align*}
s_{\Upsilon}^{2}= & \left(\hat{\eta}_{\varepsilon}-3 s_{\varepsilon}^{4}\right) \operatorname{tr} Q_{\Upsilon} \odot Q_{\Upsilon} / N T+s_{\varepsilon}^{4} 2 \operatorname{tr} Q_{\Upsilon} Q_{\Upsilon} / N T \\
& +\left(\hat{\eta}_{u}-3 s_{u}^{4}\right) \operatorname{tr} \bar{Q}_{\Upsilon} \odot \bar{Q}_{\Upsilon} / N T+s_{u}^{4} 2 \operatorname{tr} \bar{Q}_{\Upsilon} \bar{Q}_{\Upsilon} / N T \tag{22}\\
& +s_{\varepsilon}^{2} s_{u}^{2} \operatorname{tr} \operatorname{tr}\left(l_{T} \otimes I_{N}\right)^{\prime} Q_{\Upsilon} Q_{\Upsilon}\left(l_{T} \otimes I_{N}\right) / N T
\end{align*}
$$

Before we apply these procedures to our cost data, we consider two polar cases for the data generating mechanism of the x 's.

Example 1: for each $i, x_{i t}$ are perfectly correlated over time. In this case, $P_{w}=I_{N T}$, $Q_{u}=\left(1_{T}-I_{T}\right) \otimes D^{\prime} D$ and $\hat{\pi}_{u} \doteq 1$. The matrix P_{p} interleaves the data so that the first T observations correspond to the first firm, the next T to the second firm and so on. Thus with firstorder differencing, $\hat{\pi}_{p}=1 / T$ and hence $s_{p}^{2} \rightarrow \sigma_{\varepsilon}^{2}+(1 / T) \sigma_{u}^{2}$ since differencing pooled data removes individual effects for all observations except those which are preceded by an observation corresponding to a different firm. In the empirical application in this paper, firm size is highly (though not perfectly) correlated over time so that individual electrical utilities have their observations clustered in the pooled data-set.

Example 2: $x_{i t}$ are independent over time. Reorderings within each period and in the pooled data are random. With first-order differencing, $\hat{\pi}_{u} \rightarrow d_{0}^{2}=\frac{1}{2}$ since the firm that is 'closest' to firm i in one period is unlikely to be 'closest' in another period. Furthermore $\hat{\pi}_{p} \rightarrow 1$ since individual effects will rarely be differenced out in the pooled data.

4.3 Empirical Results

We begin by obtaining estimates of the variance components σ_{u}^{2} and σ_{ε}^{2}. Using equation (12) (or equivalently (7a) applied equation by equation), we estimate β, where the Z matrix contains the explanatory variables corresponding to the Loglinear Model. Replacing y with $y-Z \hat{\beta}$ in equations (16) and (17) we obtain $s_{v}^{2}=0.0170, s_{u}^{2}=0.0145$ and by subtraction $s_{\varepsilon}^{2}=0.0025$. Thus, about 85% of the variance of the residual is attributable to the individual specific effect. To test constancy of parametric effects over time, we insert our estimate of the covariance matrix (13) into the conventional asymptotic chi-square statistic for testing linear restrictions. Our Loglinear Model involves seven regression parameters for each year (see e.g. Table I(a)). Thus a test of equality of regression coefficients over time should be approximately χ_{14}^{2} under the null. We obtain a value of $63 \cdot 18$, indicating rejection. Casual comparison of Loglinear Model estimates contained in Tables I(a)-(c) would suggest that they are not too different. However, since the residuals are dominated by a firm-specific effect and the explanatory variables are highly

Figure 2. Estimation of non-parametric component - pooled data
correlated over time, coefficient estimates are also highly correlated over time. As a result, even small differences are statistically significant.

Next, we apply the test of equality of non-parametric regression functions in Proposition 3. The standardized statistic has a standard normal distribution under the null hypothesis. Our value is 0.139 , indicating that the null cannot be rejected. Figure 2 provides kernel and spline estimates of the non-parametric scale effect using all three years of data where the estimated parametric effects have been removed using the Loglinear Model. It also illustrates the estimated scale economies as a function of the number of customers. Evidently minimum efficient scale is achieved by firms with approximately 20,000 customers. Unit costs appear flat or increase slightly for larger firms with the exception of the largest distributor, which has much higher unit costs.

5. CONCLUSIONS

A central objective of this paper has been to estimate scale economies of electricity distribution under relatively weak functional form assumptions. We have done this by implementing variants of the translog cost function where output - which in our case is the number of customers served - enters non-parametrically, while other variables are parametric. Our tests do not reject homotheticity or linearity in the logs of factor prices. Formal testing rejects the parametric translog in favour of its semiparametric counterpart (equation (1)). Our estimates indicate that minimum efficient scale in Ontario is achieved by utilities with about 20,000 customers. Those utilities which also participated in the delivery of other municipal services had costs that were 7$10 \%$ lower, suggesting the presence of economies of scope.

It may be useful to compare our findings to those of other studies. For comparison purposes, we reiterate that our utilities range in size from about 600 to 220,000 customers while sales range from 14 gwh to over 9000 gwh. Giles and Wyatt (1993) analyse data on 60 distributors in New Zealand ranging in size from less than 2000 to over 200,000 customers (Auckland) - a range that is quite comparable to that under study in this paper. Output ranges from about 17 gwh to about 3400 gwh. Giles and Wyatt (1993, p. 378) state that '... any output in the range $500-3500 \mathrm{gwh}$ is essentially consistent with minimum AC'. We have subsequently accessed New Zealand distributor data and found that the implied minimum efficient scale corresponds to utilities with about 30,000 customers.

In their analysis of 100 Norwegian distributors, Salvanes and Tjotta (1994, p. 35) find that ${ }^{\text {‘... }}$ optimal size comprises plants serving about 20,000 customers and is relatively independent of the level of gwh produced'. Indeed, they also conclude that larger firms exhibit modest decreasing returns to scale. The firms under analysis in the Norwegian study range in size from 655 to 290,560 customers while output ranges from about 11 gwh to 7500 gwh . (See also Salvanes and Tjotta, 1998.) Thus, both the Norwegian and New Zealand results are quite consistent with ours.

Filippini $(1996,1997)$ analyses 39 Swiss distributors and finds increasing returns to scale throughout his sample. While customer data is apparently not contained in his studies, Filippini defines small utilities to be those with output of about 73 gwh and large utilities to have output of about 300 gwh. Thus, Filippini's 'large utilities' are smaller than those which achieve minimum efficient scale in the Giles and Wyatt study. Comparisons with Salvanes and Tjotta and the current study are somewhat more tenuous because per capita electricity consumption is substantially higher in Norway and Canada. Nevertheless, it would appear that the 'large utilities' Filippini studies are substantially smaller than the large utilities in the Norwegian and

Ontario data. ${ }^{6}$ Thus, Filippini's findings of increasing returns to scale throughout his sample may not be inconsistent with the other studies.

The results of our study suggest that horizontal mergers between distributors are not likely to produce substantial scale economies in the operation of their usual wires business. There are likely to be substantial economies in power procurement, a function which has not been previously performed by most Ontario distributors because the preponderance of electricity has been supplied on an 'as required' basis by Ontario Hydro, the main generator. In Ontario, current restructuring initiatives separate the wires business - which is a natural monopoly and would be regulated - from electricity supply, which would be deregulated. On the other hand, since regulation of the wires business will continue, the presence of a number of distributors within one jurisdiction would help to mitigate the informational asymmetries which encumber the regulator. For example, a larger comparison group would improve the regulator's ability to use techniques such as frontier production function estimation and data envelopment analysis to estimate best practices. ${ }^{7}$

APPENDIX 1

Properties of Permutation and Differencing Matrices

Permutation matrices P have exactly one ' 1 ' in every row and column and zeros elsewhere. They are closed under matrix multiplication and $P^{-1}=P^{\prime}$. Furthermore, $\operatorname{tr} P, \operatorname{tr} P P, \operatorname{tr} P \odot P$ are all $\leqslant \operatorname{dim} P$. For an arbitrary matrix $B, P^{\prime} B P$ shuffles but otherwise does not alter the diagonal elements of B. (For notation, see last paragraph of Section 2. For more on permutation and related matrices, see Magnus, 1988.)

We may define a more general class of matrices as those that have at most one ' 1 ' in every row and column and 0 's elsewhere. Such matrices are also closed under multiplication and G^{\prime} is the pseudo-inverse where G is any general permutation matrix; $\operatorname{tr} G, \operatorname{tr} G G, \operatorname{tr} G \odot G$ are all $\leqslant \operatorname{dim} G$. Suppose G is of dimension $N T \times N T$, and define $\bar{G}=\left(l_{T}^{\prime} \otimes I_{N}\right) G\left(l_{T} \otimes I_{N}\right)$. Then sup $\bar{G} \leqslant T$, $\operatorname{tr} \bar{G} \leqslant T N, \operatorname{tr} \bar{G} \odot \bar{G} \leqslant T^{2} N, \operatorname{tr} \bar{G} \bar{G} \leqslant T^{2} N$.

Within the set of general permutation matrices are the lag matrices. Suppose $i>0$ and define L_{i}^{\prime} to have 0 's everywhere except on the i th diagonal above the main diagonal where it has 1 's. If $i<0, L_{i}^{\prime}$ has 1's on the i th diagonal below the main diagonal. L_{0} is defined to be the usual identity matrix, $L_{i}^{\prime}=L_{-i}$ and $L_{i} L_{j} \doteq L_{i+j}$.

Optimal differencing weights have the property $\Sigma_{j} d_{j} d_{j+k}=-1 / 2 m, k=1, \ldots, m$ (see Hall et al., 1990). Given the order of differencing m, the differencing matrix D may be written as $D=d_{0} L_{0}+d_{1} L_{1}^{\prime}+\cdots+d_{m} L_{m}^{\prime}$. Thus, D is a finite linear combination of general permutation matrices as are $D^{\prime} D, D D^{\prime}, D^{\prime} D D^{\prime} D, D G$ and $D^{\prime} G$ where G is any general permutation matrix. The matrix $D^{\prime} D$ has a symmetric band structure with (except for end effects), ones on the main diagonal, $-1 / 2 m$ on the m adjacent diagonals and zeros elsewhere. That is, $D^{\prime} D \doteq L_{0}-$ $(1 / 2 m)\left(L_{1}+L_{1}^{\prime}+\cdots L_{m}+L_{m}^{\prime}\right)$ so that $\operatorname{tr}\left(D^{\prime} D\right) \doteq N$. The matrix $D^{\prime} D D^{\prime} D$ has a symmetric band

[^5]structure with $1+1 / 2 m$ on the main diagonal so that $\operatorname{tr}\left(D^{\prime} D D^{\prime} D\right) \doteq N(1+1 / 2 m)$. The first m diagonals adjacent to the main diagonal take the value:
$$
-\frac{1}{m}+j \frac{1}{4 m^{2}}
$$
$j=2 m-2,2 m-3, \ldots, m-1$. The next m diagonals take the value: $j\left(1 / 4 m^{2}\right), j=m$, $m-1, \ldots, 1$. The remainder of the matrix is 0 .

Throughout the paper, traces divided by N converge in probability by virtue of our assumptions on the data-generating mechanisms for the x 's. (In Section 3, Single Equation Analysis $x_{i t}$ is independent of $x_{j s}$ if $i \neq j$ or $s \neq t$. In Section 4, Panel Data Analysis, $\left(x_{i 1}, \ldots, x_{i T}\right)$ is independent of $\left(x_{j 1}, \ldots, x_{j T}\right)$ if $i \neq j$.)

Asymptotic Distribution of Differencing Estimator

In the following, brief justification is provided for equation (7a). (For expositional purposes, the ' t ' subscript is dropped.) See also Yatchew (1997, 1998a, pp. 670-2, 694-9).

Using equation 6 note that since differencing removes the non-parametric effect f we have $D y \cong D Z \beta+D v$. Next, write $Z=g(X)+U$ where g is a smooth vector function of conditional means of each parametric explanatory variable given the non-parametric variable; $g(X)$ is an $N \times k$ matrix whose i th row contains the components of g evaluated at x_{i}. Since differencing removes $g, D Z \cong D U$. Note that $U^{\prime} U / n \xrightarrow{P} \Sigma_{z \mid x}$. Now

$$
\hat{\beta}=\left[(D Z)^{\prime} D Z\right]^{-1}(D Z)^{\prime} D y \cong \beta+\left[(D U)^{\prime} D U\right]^{-1}(D U)^{\prime} D v
$$

hence

$$
\operatorname{Cov}\left(n^{1 / 2}(\hat{\beta}-\beta)\right) \cong \sigma_{v}^{2}\left(\frac{U^{\prime} D^{\prime} D U}{n}\right)^{-1}\left(\frac{U^{\prime} D^{\prime} D D^{\prime} D U}{n}\right)\left(\frac{U^{\prime} D^{\prime} D U}{n}\right)^{-1}
$$

Since $D^{\prime} D$ has (except for end effects) ones on the main diagonal, $U^{\prime} D^{\prime} D U / n \xrightarrow{P} \Sigma_{z \mid x}$. Furthermore, since $D^{\prime} D D^{\prime} D$ has (except for end effects) $1+1 / 2 m$ on the main diagonal $U^{\prime} D^{\prime} D D^{\prime} D U / n \xrightarrow{P}(1+1 / 2 m) \Sigma_{z \mid x}$. Thus

$$
\operatorname{Cov}\left(n^{1 / 2}(\hat{\beta}-\beta)\right) \xrightarrow{P} \sigma_{v}^{2}\left(1+\frac{1}{2 m}\right) \Sigma_{z \mid x}^{-1}
$$

Lemma 1: Define the $N T$-dimensional stacked vector v as in equation (10) with $\operatorname{Cov}(v)=$ $\sigma_{\varepsilon}^{2} I_{N T}+\sigma_{u}^{2}\left(1_{T} \otimes I_{N}\right)$. Let Q be an $N T \times N T$ symmetric matrix, $\bar{Q}=\left(l_{T} \otimes I_{N}\right)^{\prime} Q\left(l_{T} \otimes I_{N}\right)$. Then $E\left(v^{\prime} Q v\right)=\sigma_{\varepsilon}^{2} \operatorname{tr} Q+\sigma_{u}^{2} \operatorname{tr} \bar{Q}$ and

$$
\begin{aligned}
\operatorname{Var}\left(v^{\prime} Q v\right)= & \left(\eta_{\varepsilon}-3 \sigma_{\varepsilon}^{4}\right) \operatorname{tr} Q \odot Q+\sigma_{\varepsilon}^{4} 2 \operatorname{tr} Q Q \\
& +\left(\eta_{u}-3 \sigma_{u}^{4}\right) \operatorname{tr} \bar{Q} \odot \bar{Q}+\sigma_{u}^{4} 2 \operatorname{tr} \bar{Q} \bar{Q} \\
& +\sigma_{\varepsilon}^{2} \sigma_{u}^{2} 4 \operatorname{tr}\left(l_{T} \otimes I_{N}\right)^{\prime} Q Q\left(l_{T} \otimes I_{N}\right)
\end{aligned}
$$

Comment on Lemma 1: Lemma 1 can be used to calculate asymptotic variances of the quadratic forms in s_{v}^{2}, s_{u}^{2} and s_{p}^{2} as well as of test statistic Υ in Proposition 3. To prove Lemma 1 we will use the following. Suppose $\vartheta=\left(\vartheta_{1}, \ldots, \vartheta_{\xi}\right)^{\prime}$ where $E \vartheta_{i}=0, \operatorname{Var}\left(\vartheta_{i}\right)=\sigma_{\vartheta}^{2}, E \vartheta_{i}^{4}=\eta_{\vartheta}$ and ϑ has covariance matrix $\sigma_{\vartheta}^{2} I_{\xi}$. If A is a symmetric matrix, then $E\left(\vartheta^{\prime} A \vartheta\right)=\sigma_{\vartheta}^{2} \operatorname{tr} A$ and $\operatorname{Var}\left(\vartheta^{\prime} A \vartheta\right)=\left(\eta_{\vartheta}-3 \sigma_{\vartheta}^{4}\right) \operatorname{tr} A \odot A+\sigma_{\vartheta}^{4} 2 \operatorname{tr} A A$. For results of this type see e.g. Schott (1997) or they may be proved directly.
Proof of Lemma 1: Rewrite $v^{\prime} Q v=\varepsilon^{\prime} Q \varepsilon+u^{\prime} Q u+2 \varepsilon^{\prime} Q u=\varepsilon^{\prime} Q \varepsilon+u_{0}^{\prime} \bar{Q} u_{0}+2 \varepsilon^{\prime} Q u$ where $u=l_{T} \otimes u_{0}$ and $u_{0}=\left(u_{1}, \ldots, u_{N}\right)^{\prime}$ contains the individual effects with which individuals are endowed at birth. Note that the three terms in the expansion are mutually uncorrelated. Using the Comment above obtain $E\left(\varepsilon^{\prime} Q \varepsilon\right)$ and $E\left(u_{0}^{\prime} \bar{Q} u_{0}\right)$. Collect terms to obtain $E\left(v^{\prime} Q v\right)$. Again referring to the Comment above, calculate $\operatorname{Var}\left(\varepsilon^{\prime} Q \varepsilon\right)$ and $\operatorname{Var}\left(u_{0}^{\prime} \bar{Q} u_{0}\right)$. Note that $\operatorname{Var}\left(\varepsilon^{\prime} Q u\right)=E\left(u^{\prime} Q \varepsilon \varepsilon^{\prime} Q u\right)=\sigma_{\varepsilon}^{2} E_{u}\left(u^{\prime} Q Q u\right)=\sigma_{\varepsilon}^{2} \sigma_{u}^{2} \operatorname{tr}\left(l_{T}^{\prime} \otimes I_{N}\right) Q Q\left(l_{T} \otimes I_{N}\right)$. Collect terms to obtain $\operatorname{Var}\left(v^{\prime} Q v\right)$.

Lemma 2: Suppose $\left(x_{i}, \varepsilon_{i}\right), i=1, \ldots, \xi$ are i.i.d. The x_{i} have density bounded away from zero on the unit interval and $\varepsilon_{i} \mid x_{i} \sim\left(0, \sigma_{\varepsilon}^{2}\right)$. Assume data have been reordered so that $x_{1} \leqslant \cdots \leqslant x_{\xi}$. Define $\tilde{f}=\left(f\left(x_{1}\right), \ldots, f\left(x_{\xi}\right)\right)^{\prime}$ where the function f has a bounded first derivative. Let D be a differencing matrix of, say, order m. Then $\tilde{f}^{\prime} D^{\prime} D \tilde{f}=O_{P}\left(\xi^{-1+\delta}\right)$ and $\operatorname{Var}\left(\tilde{f}^{\prime} D^{\prime} D \varepsilon\right)=O_{P}\left(\xi^{-1+\delta}\right)$ where δ is positive and arbitrarily close to 0 .

Proof of Lemma 2: The results follow immediately from Yatchew (1997, Appendix, equations (A. 2 and (A.3)).

Lemma 3: Let G_{N} be a sequence of $N \times N$ general permutation matrices such that $\operatorname{tr} G_{N} / N$ and $\operatorname{tr} G_{N} G_{N} / N$ converge in probability to constants λ and γ respectively. Let $\vartheta_{i} \sim\left(0, \sigma_{\vartheta}^{2}\right)$ be i.i.d. random variables with finite fourth-moment η_{ϑ} and define $\vartheta=\left(\vartheta_{1}, \ldots, \vartheta_{N}\right)^{\prime}$. Then

$$
N^{1 / 2}\left(\frac{1}{N} \vartheta^{\prime} G_{N} \vartheta-\frac{\sigma_{\vartheta}^{2}}{N} \operatorname{tr} G_{N}\right) \xrightarrow{D} N\left(0, \lambda\left(\eta_{\vartheta}-3 \sigma_{\vartheta}^{4}\right)+\gamma 2 \sigma_{\vartheta}^{4}\right)
$$

Proof of Lemma 3: Rewrite $G_{N}=\Lambda_{N}+\Gamma_{N}$ where Λ_{N} is a diagonal matrix (with 1's and 0 's on the diagonal) and Γ_{N} which has 0 's on the main diagonal. Note that $\vartheta^{\prime} \Lambda_{N} \vartheta$ and $\vartheta^{\prime} \Gamma_{N} \vartheta$ are uncorrelated. Since $\operatorname{tr} \Lambda_{N} / N=\operatorname{tr} G_{N} / N \xrightarrow{P} \lambda$ we have

$$
N^{1 / 2}\left(\frac{1}{N} \vartheta^{\prime} \Lambda_{N} \vartheta-\frac{\sigma_{\vartheta}^{2}}{N} \operatorname{tr} G_{N}\right) \xrightarrow{D} N\left(0, \lambda\left(\eta_{\vartheta}-\sigma_{\vartheta}^{4}\right)\right)
$$

Next, note that the eigenvalues of Γ_{N} are bounded in absolute value by 1 and that each row of Γ_{N} contains at most one non-zero element (which equals 1). Further,

$$
\operatorname{tr} \Gamma_{N} \Gamma_{N} / N \xrightarrow{P} \gamma-\lambda
$$

We may now apply de Jong (1987, Theorem 5.2) to conclude that

$$
N^{1 / 2} \frac{\vartheta^{\prime} \Gamma_{N} \vartheta}{N} \xrightarrow{D} N\left(0,2(\gamma-\lambda) \sigma_{\vartheta}^{4}\right)
$$

and the result of Lemma 3 follows immediately.

Comments on Lemma 3: Suppose P is a permutation matrix. Then

$$
P^{\prime} D^{\prime} D P \doteq L_{0}-\frac{1}{2 m}\left[P^{\prime} L_{1} P+P^{\prime} L_{1}^{\prime} P+\cdots+P^{\prime} L_{m} P+P^{\prime} L_{m}^{\prime} P\right]
$$

Note that $P^{\prime} L_{i} P$ and $P L_{i}^{\prime} P$ are matrices of the form used in the quadratic form of Lemma 3 since each is a (general) permutation matrix. More generally, let P_{A}, P_{B} be (general) permutation matrices and consider:

$$
P_{A}^{\prime} D^{\prime} D P_{B} \doteq P_{A}^{\prime} L_{0} P_{B}-\frac{1}{2 m}\left[P_{A}^{\prime} L_{1} P_{B}+P_{A}^{\prime} L_{1}^{\prime} P_{B}+\cdots+P_{A}^{\prime} L_{m} P_{B}+P_{A}^{\prime} L_{m}^{\prime} P_{B}\right]
$$

which is a weighted combination of matrices that satisfy the form used in the quadratic form of Lemma 3 since $P_{A}^{\prime} L_{i} P_{B}$ and $P_{A}^{\prime} L_{i}^{\prime} P_{B}$ are (general) permutation matrices.

Similarly, by straightforward expansion and regrouping of terms, it can be shown that $P_{A}^{\prime} D^{\prime} P_{A} P_{B}^{\prime} D P_{B}$ and $P_{B}^{\prime} D^{\prime} P_{B} P_{A}^{\prime} D P_{A}$ can be rewritten as a weighted sum of matrices of the form used in the quadratic form of Lemma 3.

Proof of Proposition 1: In the following we make use of the above 'Properties of Permutations and Differencing Matrices'.

Consistency of $s_{v}^{2}: \operatorname{tr} Q_{v} \doteq N T$ and $\operatorname{tr} \bar{Q}_{v} \doteq N T$ where $\bar{Q}_{v}=\left(l_{T}^{\prime} \otimes I_{N}\right) Q_{v}\left(l_{T} \otimes I_{N}\right)$. Note that $\operatorname{tr} Q_{v} \odot Q_{v}, \operatorname{tr} Q_{v} Q_{v}, \operatorname{tr} \bar{Q}_{v} \odot \bar{Q}_{v}, \operatorname{tr} \bar{Q}_{p v} \bar{Q}_{v}$ and $\operatorname{tr}\left(l_{T} \otimes I_{N}\right)^{\prime} Q_{v} Q_{v}\left(l_{T} \otimes I_{N}\right)$ are $O(N)$. Apply Lemma 2 to conclude that $s_{v}^{2}-v^{\prime} Q_{v} v / N T \rightarrow 0$. Apply Lemma 1 to conclude that $E\left(v^{\prime} Q_{v} v\right) / N T \doteq \sigma_{v}^{2}$ and that $\operatorname{Var}\left(v^{\prime} Q_{v} v\right)=O(N)$. Hence $\operatorname{Var}\left(s_{v}^{2}\right) \rightarrow 0$ and the estimator is consistent.

Consistency of $s_{p}^{2}: \operatorname{tr} Q_{p} \doteq N T$ and $\operatorname{tr} \bar{Q}_{p}=N T \hat{\pi}_{p}$ where $\bar{Q}_{p}=\left(\imath_{T}^{\prime} \otimes I_{N}\right) Q_{p}\left(l_{T} \otimes I_{N}\right)$ so that conditional on the x^{\prime} 's, $E\left(v^{\prime} Q_{p} v / N T\right) \doteq \sigma_{\varepsilon}^{2}+\hat{\pi}_{p} \sigma_{u}^{2}$. Note that $\operatorname{tr} Q_{p} \odot Q_{p}, \operatorname{tr} Q_{p} Q_{p}, \operatorname{tr} \bar{Q}_{p} \odot \bar{Q}_{p}$, $\operatorname{tr} \bar{Q}_{p} \bar{Q}_{p}$ and $\operatorname{tr}\left(l_{T} \otimes I_{N}\right)^{\prime} Q_{p} Q_{p}\left(l_{T} \otimes I_{N}\right)$ are $\tilde{O}(N)$. Now follow the above proof of consistency of s_{v}^{2}.
Consistency of s_{u}^{2} : Q_{u} has diagonal elements 0 , thus $\operatorname{tr} Q_{u}=\operatorname{tr} Q_{u} \odot Q_{u}=0$. Write $\bar{Q}_{u}=\left(l_{T}^{\prime} \otimes I_{N}\right) Q_{u}\left(l_{T} \otimes I_{N}\right)=\Sigma_{s \neq t} P_{s}^{\prime} D^{\prime} P_{s} P_{t}^{\prime} D P_{t}$ where P_{1}, \ldots, P_{T} are the $N \times N$ permutation matrices that make up the diagonal blocks of P_{w}. We have $\operatorname{tr} \bar{Q}_{u}=N T(T-1) \hat{\pi}_{u}$ and conditional on the $x^{\prime} \mathrm{s} E\left(v^{\prime} Q_{u} v /\left(N T(T-1) \hat{\pi}_{u}\right)\right) \doteq \sigma_{u}^{2}$. Next, note that $\operatorname{tr} Q_{u} Q_{u}=\Sigma_{s \neq t} \operatorname{tr} P_{s}^{\prime} D D^{\prime} P_{s} P_{t}^{\prime} D D^{\prime} P_{t}$ $\operatorname{tr} \bar{Q}_{u} \odot \bar{Q}_{u}, \operatorname{tr} \bar{Q}_{u} \bar{Q}_{u}$ and $\operatorname{tr}\left(l_{T}^{\prime} \otimes I_{N}\right) Q_{u} Q_{u}\left(l_{T} \otimes I_{N}\right)$ are $O(N)$. Now follow the above proof of consistency s_{v}^{2}.

Proof of Proposition 2: Using arguments similar to Lemma 2 it can be shown that differencing removes the nonparametric effect quickly enough so that

$$
\begin{gathered}
\frac{1}{N T} \sum_{t}\left(P_{t}^{\prime} D P_{t} y_{t} \odot P_{t}^{\prime} D P_{t} y_{t}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} y_{t} \odot P_{t}^{\prime} D P_{t} y_{t}\right)-\left(P_{t}^{\prime} D P_{t} v_{t} \odot P_{t}^{\prime} D P_{t} v_{t}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} v_{t} \odot P_{t}^{\prime} D P_{t} v_{t}\right) \xrightarrow{P} 0 \\
\frac{1}{N T(T-1)} \sum_{s \neq t}\left(P_{s}^{\prime} D P_{s} y_{s} \odot P_{s}^{\prime} D P_{s} y_{s}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} y_{t} \odot P_{t}^{\prime} D P_{t} y_{t}\right)-\left(P_{s}^{\prime} D P_{s} v_{s} \odot P_{s}^{\prime} D P_{s} v_{s}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} v_{t} \odot P_{t}^{\prime} D P_{t} v_{t}\right) \xrightarrow{P} 0
\end{gathered}
$$

We will show that

$$
\begin{array}{r}
\frac{1}{N T} \sum_{t}\left(P_{t}^{\prime} D P_{t} v_{t} \odot P_{t}^{\prime} D P_{t} v_{t}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} v_{t} \odot P_{t}^{\prime} D P_{t} v_{t}\right) \xrightarrow{P} \frac{1}{2} \eta_{e}+\frac{1}{2} \eta_{\epsilon}+6 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}+\frac{3}{2} \sigma_{u}^{4}+\frac{3}{2} \sigma_{\varepsilon}^{4} \\
\frac{1}{N T(T-1)} \sum_{s \neq t}\left(P_{s}^{\prime} D P_{s} v_{s} \odot P_{s}^{\prime} D P_{s} v_{s}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} v_{t} \odot P_{t}^{\prime} D P_{t} v_{t}\right) \xrightarrow{P} \frac{1}{2} \pi_{u} \eta_{u}+2 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}+\frac{3}{2} \pi_{u} \sigma_{u}^{4}+\sigma_{\varepsilon}^{4} \tag{A1.1}
\end{array}
$$

Existence of fourth-order moments of u_{i} and $\varepsilon_{i t}$ is sufficient to ensure that the LHS of the above equations converge to constants. To determine those constants, we need to compute certain expectations. Rewrite $P_{t}^{\prime} D P_{t} v_{t}=P_{t}^{\prime}\left(d_{0} L_{0}+d_{1} L_{1}^{\prime}\right) P_{t} v_{t}=\left(v_{t}+A_{t} v_{t}\right) / \sqrt{2}$ noting that $A_{t} \equiv P_{t}^{\prime} L_{1}^{\prime} P_{t}$ is a (general) permutation matrix with the important property that it has 0 's on the diagonal. Note also that $A_{t} v_{t} \odot A_{t} v_{t}=A_{t}\left(v_{t} \odot v_{t}\right)$ and $\left(v_{t} \odot A_{t} v_{t}\right)^{\prime}\left(v_{t} \odot A_{t} v_{t}\right)=\left(v_{t} \odot v_{t}\right)^{\prime}\left(A_{t} v_{t} \odot A_{t} v_{t}\right)=$ $\left(v_{t} \odot v_{t}\right)^{\prime} A_{t}\left(v_{t} \odot v_{t}\right)$.

Define $\eta_{v}=E v_{i t}^{4}=\eta_{u}+6 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}+\eta_{\varepsilon}$ and note that $\left(E v_{i t}^{2}\right)^{2}=\left(\sigma_{u}^{2}+\sigma_{\varepsilon}^{2}\right)^{2}=\sigma_{u}^{4}+2 \sigma_{\varepsilon}^{2} \sigma_{u}^{2}+\sigma_{\varepsilon}^{4}$. Consider

$$
\begin{align*}
& E\left(P_{t}^{\prime} D P_{t} v_{t} \odot P_{t}^{\prime} D P_{t} v_{t}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} v_{t} \odot P_{t}^{\prime} D P_{t} v_{t}\right) \\
& =\frac{1}{4} E\left(v_{t} \odot v_{t}+2 v_{t} \odot A_{t} v_{t}+A_{t}\left(v_{t} \odot v_{t}\right)\right)^{\prime}\left(v_{t} \odot v_{t}+2 v_{t} \odot A_{t} v_{t}+A_{t}\left(v_{t} \odot v_{t}\right)\right) \tag{A1.2}
\end{align*}
$$

which can be expanded and the expectations evaluated term by term. The non-zero terms are:
(i) $E\left(v_{t} \odot v_{t}\right)^{\prime}\left(v_{t} \odot v_{t}\right)=N E v_{i t}^{4}$
(ii) $E\left(v_{t} \odot v_{t}\right)^{\prime} A_{t}\left(v_{t} \odot v_{t}\right) \doteq N\left(E v_{i t}^{2}\right)^{2}$
(iii) $E 4\left(v_{t} \odot A_{t} v_{t}\right)^{\prime}\left(v_{t} \odot A_{t} v_{t}\right)=E 4\left(v_{t} \odot v_{t}\right)^{\prime}\left(A_{t} v_{t} \odot A_{t} v_{t}\right) \doteq N 4\left(E v_{i t}^{2}\right)^{2}$
(iv) $E\left(v_{t} \odot v_{t}\right)^{\prime} A_{t}^{\prime} A_{t}\left(v_{t} \odot v_{t}\right) \doteq E\left(v_{t} \odot v_{t}\right)^{\prime}\left(v_{t} \odot v_{t}\right)=N E v_{i t}^{4}$

Now collect terms to conclude that, except for 'end effects', equation (A1.2) equals

$$
\frac{1}{4} N\left[2\left(\eta_{u}+6 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}+\eta_{\varepsilon}\right)+6\left(\sigma_{u}^{4}+2 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}+\sigma_{\varepsilon}^{4}\right)\right]=N\left[\frac{1}{2} \eta_{u}+\frac{1}{2} \eta_{\varepsilon}+6 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}+\frac{3}{2} \sigma_{u}^{4}+\frac{3}{2} \sigma_{\varepsilon}^{4}\right]
$$

Next, for $s \neq t$ consider

$$
\begin{align*}
& E\left(P_{s}^{\prime} D P_{s} v_{s} \odot P_{s}^{\prime} D P_{s} v_{s}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} v_{t} \odot P_{t}^{\prime} D P_{t} v_{t}\right) \\
& =\frac{1}{4} E\left(v_{s} \odot v_{s}+2 v_{s} \odot A_{s} v_{s}+A_{s}\left(v_{s} \odot v_{s}\right)\right)^{\prime}\left(v_{t} \odot v_{t}+2 v_{t} \odot A_{t} v_{t}+A_{t}\left(v_{t} \odot v_{t}\right)\right) \tag{A1.3}
\end{align*}
$$

which can be expanded and expectations evaluated term by term. The non-zero terms are:
(i) $E\left(v_{s} \odot v_{s}\right)^{\prime}\left(v_{t} \odot v_{t}\right)=E\left(u_{0} \odot u_{0}+2 u_{0} \odot \varepsilon_{s}+\varepsilon_{s} \odot \varepsilon_{s}\right)^{\prime}\left(u_{0} \odot u_{0}+2 u_{0} \odot \varepsilon_{t}+\varepsilon_{t} \odot \varepsilon_{t}\right)$

$$
=N\left(\eta_{u}+2 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}+\sigma_{\varepsilon}^{4}\right)
$$

(ii) $E\left(v_{s} \odot v_{s}\right)^{\prime} A_{t}\left(v_{t} \odot v_{t}\right) \doteq N\left(\sigma_{u}^{4}+2 \sigma_{\varepsilon}^{2} \sigma_{u}^{2}+\sigma_{\varepsilon}^{4}\right)$
(iii) $E 4\left(v_{s} \odot A_{s} v_{s}\right)^{\prime}\left(v_{t} \odot A_{t} v_{t}\right)=4 E\left(u_{0} \odot A_{s} u_{0}\right)^{\prime}\left(u_{0} \odot A_{t} u_{0}\right)=4 E\left(u_{0} \odot u_{0}\right)^{\prime}\left(A_{s} u_{0} \odot A_{t} u_{0}\right)$ $=4 \sigma_{u}^{4} \mathrm{tr} A_{s}^{\prime} A_{t}$
(iv) $E\left(v_{s} \odot v_{s}\right)^{\prime} A_{s}^{\prime}\left(v_{t} \odot v_{t}\right) \doteq N\left(\sigma_{u}^{4}+2 \sigma_{\varepsilon}^{2} \sigma_{u}^{2}+\sigma_{\varepsilon}^{4}\right)$
(v) $E\left(v_{s} \odot v_{s}\right)^{\prime} A_{s}^{\prime} A_{t}\left(v_{t} \odot v_{t}\right)=E\left(u_{0} \odot u_{0}+2 u_{0} \odot \varepsilon_{s}+\varepsilon_{s} \odot \varepsilon_{s}\right)^{\prime} A_{s}^{\prime} A_{t}\left(u_{0} \odot u_{0}+2 u_{0} \odot \varepsilon_{t}+\varepsilon_{t} \odot \varepsilon_{t}\right)$ $\doteq N\left(\eta_{u} \operatorname{tr} A_{s}^{\prime} A_{t} / N+\sigma_{u}^{4}\left(1-\operatorname{tr} A_{s}^{\prime} A_{t} / N\right)+2 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}+\sigma_{\varepsilon}^{4}\right)$

Now collect terms to conclude that, except for end effects, equation (A1.3) equals

$$
\frac{1}{4} N\left[\eta_{u}\left(1+\frac{\operatorname{tr} A_{s}^{\prime} A_{t}}{N}\right)+3 \sigma_{u}^{4}\left(1+\frac{\operatorname{tr} A_{s}^{\prime} A_{t}}{N}\right)+8 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}+4 \sigma_{\varepsilon}^{4}\right]
$$

Note that $1+\operatorname{tr} A_{s}^{\prime} A_{t} / N=2 \operatorname{tr} P_{s}^{\prime} D^{\prime} P_{s} P_{t}^{\prime} D P_{t} / N$ and that $\hat{\pi}_{u}=\operatorname{tr} \sum_{s \neq t} P_{s}^{\prime} D^{\prime} P_{s} P_{t}^{\prime} D P_{t} / N T(T-1)$. Thus we have shown that equation (A1.1) holds.

Using equation (A1.1) we may now conclude that

$$
\begin{aligned}
& \eta_{u}=\left(\operatorname{plim}\left(\frac{2}{N T(T-1)} \sum_{s \neq t}\left(P_{s}^{\prime} D P_{s} y_{s} \odot P_{s}^{\prime} D P_{s} y_{s}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} y_{t} \odot P_{t}^{\prime} D P_{t} y_{t}\right)\right)-4 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}-3 \pi_{u} \sigma_{u}^{4}-2 \sigma_{\varepsilon}^{4}\right) / \pi_{u} \\
& \eta_{\varepsilon}=\operatorname{plim}\left(\frac{2}{N T} \sum_{t}\left(P_{t}^{\prime} D P_{t} y_{t} \odot P_{t}^{\prime} D P_{t} y_{t}\right)^{\prime}\left(P_{t}^{\prime} D P_{t} y_{t} \odot P_{t}^{\prime} D P_{t} y_{t}\right)\right)-\eta_{u}-12 \sigma_{u}^{2} \sigma_{\varepsilon}^{2}-3 \sigma_{u}^{4}-3 \sigma_{\varepsilon}^{4}
\end{aligned}
$$

Replacing quantities on the right-hand sides with consistent estimates yields consistent estimators of η_{u} and η_{ε}.
Proof of Proposition 3: Using Lemma 2, conclude that $(N T)^{1 / 2}\left(s_{v}^{2}-v^{\prime} Q_{v} v / N T\right) \xrightarrow{P} 0$, $(N T)^{1 / 2}\left(s_{p}^{2}-v^{\prime} Q_{p} v / N T\right) \xrightarrow{P} 0,(N T)^{1 / 2}\left(s_{u}^{2}-v^{\prime} Q_{u} v /\left(\pi_{u} N T\left(T_{p}-1\right)\right)\right) \xrightarrow{P} 0$ in which case using equation (21) we may conclude that $\left(\Upsilon-v^{\prime} Q_{\curlyvee} v /(N T)^{1 / 2}\right) \xrightarrow{P} 0$.

Rewrite $v^{\prime} Q_{v} v, v^{\prime} Q_{p} v$ and $v^{\prime} Q_{u} v$ as finite weighted combinations of terms of the form $\varepsilon_{t}^{\prime} G \varepsilon_{t}$, $u_{0}^{\prime} G u_{0}, \varepsilon_{s}^{\prime} G \varepsilon_{t}$ and $u_{0}^{\prime} G \varepsilon_{t}$ where G is a general permutation matrix of dimension $N \times N$ (see comments following Lemma 3 above). The number of such terms depends on T and m but not on N. Now apply Lemma 3 to terms of the first and second type. For terms of the form $\varepsilon_{s}^{\prime} G \varepsilon_{t}$ and $u_{0}^{\prime} G \varepsilon_{t}$ note that since G has at most one ' 1 ' in each row and column, such terms are sums of independent random variables so that a conventional CLT may be applied. Using equation (20) conclude that $v^{\prime} Q_{\Upsilon} v /(N T)^{1 / 2}$ and hence $y^{\prime} Q_{\Upsilon} y /(N T)^{1 / 2}$ are asymptotically normal. Recall $\operatorname{tr} Q_{v} \doteq N T, \operatorname{tr} Q_{p} \doteq N T$ and Q_{u} has diagonal elements 0 . Hence, conditional on the x 's, $E\left(v^{\prime} Q_{\Upsilon} v /(N T)^{1 / 2}\right)=\operatorname{tr} Q_{\Upsilon} /(N T)^{1 / 2} \doteq 0$. Using Lemma 1, $\operatorname{Var}\left(v^{\prime} Q_{\Upsilon} v /(N T)^{1 / 2}\right)$ may be calculated. Replacing various moments with consistent estimates yields equation (22).
APPENDIX 2. VARIABLE DEFINITIONS AND SUMMARY STATISTICS

		1993				1994				1995			
		Mean	SD	Min	Max	Mean	SD	Min	Max	Mean	SD	Min	Max
Raw data													
TC	total costs (\$mill/annum)	6.73	17.22	$0 \cdot 137$	137.0	$7 \cdot 02$	17.44	$0 \cdot 144$	138.0	7.02	17.06	$0 \cdot 153$	134.0
CUST	number of customers	23538	41012	629	219376	23718	41236	624	219723	23895	41474	636	220215
WAGE	wage of lineman (\$/hour)	21.35	1.92	16.50	24.53	21.54	1.88	16.75	24.53	21.64	1.86	17.00	24.53
TOTPLANT	accum. gross investment (\$mill.)	53.08	116.0	$0 \cdot 891$	767.0	$55 \cdot 80$	121.0	0.945	776.0	59.98	133.0	0.970	881.0
PUC	public utility commission dummy	$0 \cdot 457$	0.501	0	1	0.457	$0 \cdot 501$	0	1	$0 \cdot 457$	$0 \cdot 501$	0	1
KWH	kilowatt hour sales (gwh/yr)	791	1630	14.2	9220	799	1640	14.51	9310	802	1640	$15 \cdot 3$	9150
LIFE	fixed assets remaining lifetime (yrs)	14.41	$2 \cdot 303$	8.90	21.2	13.41	$2 \cdot 303$	7.90	$20 \cdot 2$	12.41	$2 \cdot 303$	$6 \cdot 90$	19.2
LF	load factor (\%)	70.94	$5 \cdot 235$	37.59	82.54	70.94	5.235	37.59	82.54	$70 \cdot 94$	5.235	37.59	82.54
KMWIRE	kilometres of distribution wire	311.24	529.83	$10 \cdot 0$	$3000 \cdot 0$	311.79	529.75	$10 \cdot 2$	$3000 \cdot 1$	312.22	529.73	$10 \cdot 8$	$3000 \cdot 2$
Dependent variable: y													
	$\log ($ TC/CUST $)$	5.439	$0 \cdot 236$	4.816	6.439	5.474	$0 \cdot 243$	4.894	6.439	$5 \cdot 500$	$0 \cdot 216$	5.080	6.410
Non-parametri cust	independent variable: x $\log ($ CUST $)$	8.875	1.540	6.444	$12 \cdot 299$	8.886	$1 \cdot 540$	6.436	$12 \cdot 300$	8.894	1.539	6.455	$12 \cdot 300$
Parametric independent variables													
PUC		0.457	$0 \cdot 501$	0	1	0.457	$0 \cdot 501$	0	1	$0 \cdot 457$	0.501	0	1
wage	\log (WAGE)	3.057	0.092	$2 \cdot 803$	$3 \cdot 20$	3.066	$0 \cdot 089$	$2 \cdot 818$	$3 \cdot 20$	3.070	0.088	2.833	$3 \cdot 20$
pcap	\log (TOTPLANT/KMWIRE)	11.686	0.454	10.305	12.63	11.732	0.454	10.381	12.68	11.792	0.458	10.430	12.76
kwh	$\log ($ KWH/CUST $)$	10.088	$0 \cdot 285$	9.392	10.70	10.085	$0 \cdot 295$	9.340	10.72	10.078	$0 \cdot 302$	9.313	10.74
life	\log (LIFE)	2.655	$0 \cdot 162$	$2 \cdot 186$	3.05	2.581	$0 \cdot 175$	2.067	3.01	2.501	$0 \cdot 190$	1.932	2.95
If	$\log (L F)$	4.258	0.087	3.627	4.41	4.259	0.087	3.627	4.41	4.258	0.087	3.627	4.41
kmwire	$\log ($ KMWIRE/CUST)	-4.292	0.317	-4.989	-3.626	-4.292	$0 \cdot 312$	-4.994	-3.630	-4.292	$0 \cdot 313$	-5.000	-3.607

ACKNOWLEDGEMENTS

The author is grateful to John Rust, Kjell Salvanes, Sigve Tjotta and two anonymous referees for their helpful comments.

REFERENCES

Ahn, H. and J. Powell (1993), 'Semiparametric estimation of censored selection models with a nonparametric selection mechanism', Journal of Econometrics, 58, 2-29.
Baltagi, B., J. Hidalgo and Q. Li (1996), 'A nonparametric test for poolability using panel data', Journal of Econometrics, 75, 345-367.
Cox, D. and E. Koh (1989), 'A smoothing spline based test of model adequacy in polynomial regression', Annals of the Institute of Statistical Mathematics, 41, 383-400.
de Jong, P. (1987), 'A central limit theorem for generalized quadratic forms', Probab. Th. Rel. Fields, 75, 261-277.
Filippini, M. (1996), 'Economies of scale and utilization', Applied Economics, 28, 543-550.
Filippini, M. (1997), Elements of the Swiss Market for Electricity, Physica Verlag, Heidelberg.
Giles, D. and N. S. Wyatt (1993), 'Economies of scale in the New Zealand electricity distribution industry', in P. C. B. Phillips (ed.), Models, Methods and Applications of Econometrics, Blackwell, Oxford, 370-382.
Green, R. and A. Jackson (1994), 'Electricity distribution: a comparative efficiency study of the regional electricity companies', Department of Applied Economics, Cambridge University, Cambridge, UK.
Hall, P., J. W. Kay and D. M. Titterington (1990), 'Asymptotically optimal difference-based estimation of variance in nonparametric regression', Biometrika, 77, 521-528.
Hjalmarsson, L. and A. Veiderpass (1992a), 'Productivity in Swedish electricity retail distribution', Scandinavian Journal of Economics, 94 (Supplement), 193-205.
Hjalmarsson, L. and A. Veiderpass (1992b), 'Efficiency and ownership in Swedish electricity retail distribution', Journal of Productivity Analysis, 3, 7-23.
Kwoka, J. (1997), Power Structure: Ownership, Integration and Competition in the U.S. Electricity Industry, Kluwer Academic Publishers, Boston, MA.
Magnus, J. R. (1988), Linear Structures, Charles Griffin and Co., London/Oxford University Press, New York.
Nelson, R. (1990), 'The effects of competition on publicly-owned firms: evidence from the municipal electric industry in the U.S.', International Journal of Industrial Organization, 8, 37-51.
Neuberg, L. (1977), 'Two issues in the municipal ownership of electric power distribution systems', Bell Journal of Economics, 8, 302-323.
Ontario Hydro (1995), Accounting for Municipal Electric Utilities in Ontario.
Pollitt, M. J. (1995), Ownership and Performance in Electric Utilities: The International Evidence on Privatization and Efficiency, Oxford University Press, Oxford.
Powell, J. (1987), 'Semiparametric estimation of bivariate latent variable models', Working Paper 8704, Social Systems Research Institute of Wisconsin, University of Wisconsin, Madison.
Rice, J. (1984), 'Bandwidth choice for nonparametric regression', Annals of Statistics, 12, 1215-1230.
Salvanes, K. and S. Tjotta (1994), 'Productivity differences in multiple output industries', Journal of Productivity Analysis, 5, 23-43.
Salvanes, K. and S. Tjotta (1998), 'A test for natural monopoly with application to Norwegian electricity distribution', Review of Industrial Organization, 13, 669-685.
Schott, J. R. (1997), Matrix Analysis for Statistics, Wiley, New York.
Yatchew, A. J. (1988), 'Some tests of nonparametric regressions models', in W. Barnett, E. Berndt and H. White (eds), Dynamic Econometric Modelling, Proceedings of the Third International Symposium in Economic Theory and Econometrics, Cambridge University Press, Cambridge, 121-135.
Yatchew, A. J. (1997), 'An elementary estimator of the partial linear model', Economics Letters, 57, 135143, additional tables contained in Economics Letters 1998, 59, 403-405.
Yatchew, A. J. (1998a), 'Nonparametric regression techniques in economics', Journal of Economic Literature, XXXVI, 669-721.
Yatchew, A. J. (1998b), 'An elementary nonparametric differencing test of equality of regression functions', Economics Letters, in press.

[^0]: * Correspondence to: Professor A. Yatchew, Department of Economics, University of Toronto, 150 St George Street, Toronto, Canada M5S 3G7; e-mail: yatchew@chass.utoronto.ca

[^1]: ${ }^{1}$ Other studies which focus on the distribution sector include Neuberg (1977), Nelson (1990), Hjalmarsson and Veiderpass (1992a,b) and Salvanes and Tjotta (1998). For studies of the generation segment or vertically integrated electric utilities see references contained in e.g. Pollitt (1995) or Kwoka (1997).

[^2]: ${ }^{2}$ Differencing has been used in the pure non-parametric regression model by Rice (1984), Hall et al. (1990), Yatchew (1988, 1998b) and Cox and Koh (1989). In the partial linear model it has been used by Powell (1987), Ahn and Powell (1993) and Yatchew (1997).
 ${ }^{3}$ For example, the simplest differencing estimator of the residual variance in a non-parametric regression is of the form $s^{2}=\Sigma_{i}^{N}\left(y_{i}-y_{i-1}\right)^{2} / 2 N$, whence the summation begins at $i=2$.

[^3]: ${ }^{4}$ Hall et al. (1990) propose optimal weights for non-parametric differencing procedures. They claim that optimal differencing weights are unique. In fact, as m increases, there is an increasing number of optimal differencing sequences but only one which corresponds to an MA process with roots on or outside the unit circle. For the unique optimal differencing weights satisfying the latter property see Yatchew (1998a, p. 697).

[^4]: ${ }^{5}$ Statistic (8) may also be used to test non-parametric null hypotheses such as monotonicity or concavity. In these cases, $s_{\text {res }}^{2}$ may be obtained from an isotonic regression.

[^5]: ${ }^{6}$ Per capita annual electricity consumption in Switzerland and New Zealand are quite comparable at 7346 and 8865 kwh per year respectively. For Norway and Canada the figures are 24,033 and $16,413 \mathrm{kwh}$. (Source: International Energy Agency, http://www.iea.org/stat.htm, 1996 data.)
 ${ }^{7}$ Green and Jackson (1994) use frontier production function techniques to analyse distributor data in the United Kingdom, but their data-set consists of only 12 observations.

