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sets tend to be consecutive after pooling and reordering, then the covariance
between the two terms will be large. In particular, the covariance is approxi-
mately σ 4

ε (1−π), where π equals the probability that consecutive observations
in the pooled reordered data set come from different populations.

It follows that under Ho : f A = fB ,

ϒ
D→ N

(
0, 2πσ 4

ε

)
. (1.5.6)

For example, if reordering the pooled data is equivalent to stacking data sets
A and B – because the two sets of x’s, xA and xB , do not intersect – then π ∼= 0
and indeed the statistic ϒ becomes degenerate. This is not surprising, since
observing nonparametric functions over different domains cannot provide a
basis for testing whether they are the same. If the pooled data involve a simple
interleaving of data sets A and B, then π ∼= 1 and ϒ → N (0, 2σ 4

ε ). If xA and
xB are independent of each other but have the same distribution, then for the
pooled reordered data the probability that consecutive observations come from
different populations is 1/2 and ϒ → N (0, σ 4

ε ).4 To implement the test, one may
obtain a consistent estimate π̂ by taking the proportion of observations in the
pooled reordered data that are preceded by an observation from a different
population.

1.6 Empirical Application: Scale Economies in Electricity Distribution5

To illustrate these ideas, consider a simple variant of the Cobb–Douglas model
for the costs of distributing electricity

tc = f (cust) + β1wage + β2 pcap

+ β3PUC + β4kwh + β5life + β6lf + β7 kmwire + ε (1.6.1)

where tc is the log of total cost per customer, cust is the log of the number of
customers, wage is the log wage rate, pcap is the log price of capital, PUC is a
dummy variable for public utility commissions that deliver additional services
and therefore may benefit from economies of scope, life is the log of the re-
maining life of distribution assets, lf is the log of the load factor (this measures
capacity utilization relative to peak usage), and kmwire is the log of kilometers
of distribution wire per customer. The data consist of 81 municipal distributors
in Ontario, Canada, during 1993. (For more details, see Yatchew, 2000.)

4 For example, distribute n men and n women randomly along a stretch of beach facing the sunset.
Then, for any individual, the probability that the person to the left is of the opposite sex is 1/2.
More generally, if xA and xB are independent of each other and have different distributions,
then π depends on the relative density of observations from each of the two populations.

5 Variable definitions for empirical examples are contained in Appendix E.
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Because the data have been reordered so that the nonparametric variable cust
is in increasing order, first differencing (1.6.1) tends to remove the nonpara-
metric effect f . We also divide by

√
2 so that the residuals in the differenced

Equation (1.6.2) have the same variance as those in (1.6.1). Thus, we have

[tci − tci−1]/
√

2
∼= β1[wagei − wagei−1]/

√
2 + β2[pcapi − pcapi−1]/

√
2

+ β3[PUCi − PUCi−1]/
√

2 + β4[kwhi − kwhi−1]/
√

2

+ β5[lifei − lifei−1]/
√

2 + β6[lfi − lfi−1]/
√

2

+ β7[kmwirei − kmwirei−1]/
√

2 + [εi − εi−1]/
√

2. (1.6.2)

Figure 1.2 summarizes our estimates of the parametric effects β using the
differenced equation. It also contains estimates of a pure parametric specifi-
cation in which the scale effect f is modeled with a quadratic. Applying the
specification test (1.4.2), where s2

diff is replaced with (1.3.5), yields a value of
1.50, indicating that the quadratic model may be adequate.

Thus far our results suggest that by differencing we can perform inference on
β as if there were no nonparametric component f in the model to begin with.
But, having estimatedβ, we can then proceed to apply a variety of nonparametric
techniques to analyze f as if β were known. Such a modular approach simplifies
implementation because it permits the use of existing software designed for pure
nonparametric models.

More precisely, suppose we assemble the ordered pairs (yi −zi β̂diff, xi ); then,
we have

yi − zi β̂diff = zi (β − β̂diff) + f (xi ) + εi
∼= f (xi ) + εi . (1.6.3)

If we apply conventional smoothing methods to these ordered pairs such
as kernel estimation (see Section 3.2), then consistency, optimal rate of con-
vergence results, and the construction of confidence intervals for f remain
valid because β̂diff converges sufficiently quickly to β that the approximation
in the last part of (1.6.3) leaves asymptotic arguments unaffected. (This is in-
deed why we could apply the specification test after removing the estimated
parametric effect.) Thus, in Figure 1.2 we have also plotted a nonparametric
(kernel) estimate of f that can be compared with the quadratic estimate. In sub-
sequent sections, we will elaborate this example further and provide additional
ones.

1.7 Why Differencing?

An important advantage of differencing procedures is their simplicity. Con-
sider once again the partial linear model y = zβ + f (x) + ε. Conventional
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Variable Quadratic model Partial linear modela

Coef SE Coef SE
cust −0.833 0.175 – –
cust2 0.040 0.009 – –

wage 0.833 0.325 0.448 0.367
pcap 0.562 0.075 0.459 0.076

PUC −0.071 0.039 −0.086 0.043
kwh −0.017 0.089 −0.011 0.087
life −0.603 0.119 −0.506 0.131
lf 1.244 0.434 1.252 0.457

kmwire 0.445 0.086 0.352 0.094

s2
ε .021 .018

R2 .618 .675
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a Test of quadratic versus nonparametric specification of scale effect: V = n1/2(s2
res − s2

diff)/
s2
diff = 811/2(.021 − .018)/.018 = 1.5, where V is N (0,1), Section 1.4.

Figure 1.2. Partial linear model – Log-linear cost function: Scale economies in elec-
tricity distribution.
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4.6.2 Scale Economies in Electricity Distribution7

We now consider the example of Section 1.6 in considerably more detail. Sup-
pose we have a slightly more general specification that is a semiparametric
variant of the translog model (variable definitions may be found in Appendix E):

tc = f (cust) + β1wage + β2pcap + 1/2 β11wage2 + 1/2 β22pcap2

+ β12wage · pcap + β31cust · wage + β32cust · pcap + β4PUC

+ β5kwh + β6life + β7lf + β8kmwire + ε. (4.6.2)

Note that, in addition to appearing nonparametrically, the scale variable cust
interacts parametrically with wages and the price of capital. One can readily
verify that, if these interaction terms are zero (i.e., β31 = β32 = 0), then the
cost function is homothetic. If in addition β11 = β22 = β12 = 0, then the model
reduces to the log-linear specification of Section 1.6.

Differencing estimates of the parametric component of (4.6.2) are presented
in Figure 4.5. (We use third-order optimal differencing coefficients, in which
case m = 3.) Applying Proposition 4.5.2, we do not find significant statistical
evidence against either the homothetic or the log-linear models. For example,
the statistic testing the full version (4.6.2) against the log-linear specification,
which sets five parameters to zero and is distributed χ2

5 under the null, takes
a value of 3.23. Estimates of nonprice covariate effects exhibit little variation
as one moves from the full translog model to the homothetic and log-linear
models.

The last column of Figure 4.5 contains HCSEs reported two ways: the first
uses (4.5.9), which does not incorporate off-diagonal terms; the second uses
(4.5.10), which does. We believe the latter to be more accurate here given the
low order of differencing the small data set permits.

We may now remove the estimated parametric effect from the dependent
variable and analyze the nonparametric effect. In particular, for purposes of the
tests that follow, the approximation yi − zi β̂ = zi (β − β̂) + f (xi ) + εi

∼=
f (xi ) + εi does not alter the large sample properties of the procedures. We use
the estimates of the log-linear model to remove the parametric effect.

Figure 4.5 displays the ordered pairs (yi − zi β̂diff, xi ) as well as a kernel
estimate of f. Parametric null hypotheses may be tested against nonparametric
alternatives using the specification test in Section 4.3. If we insert a constant
function for f , then the procedure constitutes a test of significance of the scale
variable x against a nonparametric alternative. The resulting statistic is 9.8,
indicating a strong scale effect. Next we test a quadratic model for output.
The resulting test statistic is 2.4, suggesting that the quadratic model may be
inadequate.

7 For a detailed treatment of these data, see Yatchew (2000).
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Variable
Full model: semi- Homothetic model: semi- Log-linear model: semi-

parametric Cobb–Douglasparametric translog parametric homothetic

Coef Coef SE Coef SE HCSE HCSE
Eqn. 4.5.9 Eqn. 4.5.10

wage 5.917 6.298 12.453 0.623 0.320 0.343 0.361
pcap 2.512 1.393 1.600 0.545 0.068 0.078 0.112

1/2 wage2 0.311 0.720 2.130
1/2 pcap2 0.073 0.032 0.066

wage pcap 0.886 0.534 0.599·
cust · wage 0.054
cust · pcap 0.039

PUC 0.083 0.086 0.039 0.075 0.038 0.034 0.033
kwh 0.031 0.033 0.086 0.008 0.086 0.074 0.089
life 0.630 0.634 0.115 0.628 0.113 0.095 0.097
lf 1.200 1.249 0.436 1.327 0.434 0.326 0.304

kmwire 0.396

SE

13.297
2.107
2.342
0.083

0.738
0.086
0.049

0.039
0.086
0.117
0.450
0.087 0.399 0.087 0.413 0.084 0.090 0.115

s2
ε .01830 .0185 .01915

R2 .668 .665 .653
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Test of full (translog) model versus log-linear (Cobb–Douglas) model: χ2
5 under Ho : 3.23. Test of

quadratic versus nonparametric specification of scale effect: V = (mn)
1/2(s2

res − s2
diff)/s2

diff =
(3 ∗ 81)

1/2(.0211 − .0183)/.0183 = 2.4 where V is N (0,1). Kernel estimate produced using
ksmooth function in S-Plus. The last two columns of the table contain heteroskedasticity-consistent
standard errors (HCSEs).

Figure 4.5. Scale economies in electricity distribution.
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To provide further illustrations of differencing procedures we divide our
data into two subpopulations: those that deliver additional services besides
electricity, that is, public utility commissions (PUC), and those that are pure
electricity distribution utilities (non-PUC). The numbers of observations in the
two subpopulations are nPUC = 37 and nnonPUC = 44. We denote differencing
estimates of parametric effects and of residual variances as β̂PUC, β̂nonPUC, s2

PUC,

and s2
nonPUC. For each subpopulation, we estimate the log-linear model using

the differencing estimator and report the results in Figure 4.6.
To test whether PUC and non-PUC entities experience the same parametric

effects, we use

(β̂PUC − β̂nonPUC)′
(
�̂β̂PUC

+ �̂β̂nonPUC

)−1

× (β̂PUC − β̂nonPUC)
D→ χ2

dim(β). (4.6.3)

The computed value of the χ2
6 test statistic is 6.4, and thus the null is not

rejected. Next, we constrain the parametric effects to be equal across the two
types of utilities while permitting distinct nonparametric effects. This is accom-
plished by taking a weighted combination of the two estimates

β̂weighted =
[
�̂−1

β̂PUC
+ �̂−1

β̂nonPUC

]−1[
�̂−1

β̂PUC
· β̂PUC + �̂−1

β̂nonPUC
· β̂nonPUC

]
(4.6.4)

with estimated covariance matrix

�̂β̂weighted
=
[
�̂−1

β̂PUC
+ �̂−1

β̂nonPUC

]−1
. (4.6.5)

The results are reported in Table 4.3.8 The data can be purged of the estimated
parametric effects, and separate nonparametric curves can be fitted to each

8 A numerically similar estimator with the same large sample properties may be constructed by
differencing the data within each subpopulation and then stacking as follows[

DyPUC

DynonPUC

]
=
[

DZPUC

DZnonPUC

]
β +
[

D fPUC(xPUC)

D fnonPUC(xnonPUC)

]
+
[

DεPUC

DεnonPUC

]
.

Let β̂ be the OLS estimator applied to the preceding equation. Then, the common residual
variance may be estimated using

s2 = 1

n

([
DyPUC

DynonPUC

]
−
[

DZPUC

DZnonPUC

]
β̂

)′([ DyPUC

DynonPUC)

]
−
[

DZPUC

DZnonPUC

]
β̂

)
,

and the covariance matrix of β̂ may be estimated using∑̂
β̂

=
(

1 + 1

2m

)
s2

n

[
(DZPUC)′(DZPUC) + (DZnonPUC)′(DZnonPUC)

]−1
,

where m is the order of (optimal) differencing.
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Partial linear modela

Variable PUC non-PUC

Coef SE Coef SE

wage 0.65 0.348 1.514 0.684
pcap 0.424 0.090 0.632 0.113

kwh 0.108 0.121 0.079 0.123
life −0.495 0.131 −0.650 0.199
lf 1.944 0.546 0.453 0.702

kmwire 0.297 0.109 0.464 0.123

s2
ε 0.013 0.023
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a Order of differencing m = 3.

Figure 4.6. Scale economies in electricity distribution: PUC and non-PUC analysis.
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Table 4.3. Mixed estimation of PUC/non-PUC effects: Scale
economies in electricity distribution.a

Variable Coef SE

wage 0.875 0.304
pcap 0.526 0.067

kwh 0.066 0.086
life −0.547 0.107
lf 1.328 0.422

kmwire 0.398 0.078

aEstimates of parametric effects are obtained separately for PUC and
non-PUC subpopulations. Hence, no PUC effect is estimated. The
estimates above are obtained using (4.6.4) and (4.6.5).

subset of the data, as in the bottom panel of Figure 4.6. The PUC curve lies
below the non-PUC curve consistent with our earlier finding that PUC entities
have lower costs (see PUC coefficients in Figure 4.5).

We may now adapt our test of equality of regression functions in Section 4.4.2
to test whether the curves in Figure 4.6 are parallel, that is, whether one can be
superimposed on the other by a vertical translation. This may be accomplished
simply by removing the mean of the purged dependent variable from each of
the two subpopulations.

Define the within estimate to be the weighted average of the subpopulation
variance estimates, keeping in mind that the estimated parametric effect has
been removed using, say, β̂weighted:

s2
w = nPUC

n
s2

PUC + nnonPUC

n
s2

nonPUC. (4.6.6)

Let ypurge
PUC be the vector of data on the dependent variable for PUCs with

the estimated parametric effect removed and then centered around 0 and define
ypurge

nonPUC similarly.9 Now stack these two vectors and the corresponding data on
the nonparametric variable x to obtain the ordered pairs (ypurge

i , xi ) i = 1, . . . , n.
Let Pp be the permutation matrix that reorders these data so that the nonpara-
metric variable x is in increasing order. Note that, because separate equations

9 Because the hypothesis that the parametric effects are the same across the two populations
has not been rejected, one may use subpopulation estimates β2

PUC and β2
nonPUC or the weighted

estimate β̂weighted when computing s2
PUC, s2

nonPUC, and s2
p .
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were estimated for the two subpopulations, z does not contain the PUC dummy.
Define

s2
p = 1

n
ypurge′

P ′
p D′ D Pp ypurge. (4.6.7)

If the null hypothesis is true, then differencing will still remove the non-
parametric effect in the pooled data and s2

p will converge to σ 2
ε . Otherwise, it

will generally converge to some larger value. Applying Proposition 4.4.2 with
m = 1, we obtain a value of 1.77 for ϒ/s2

w(2π̂ϒ)
1/2, which, noting that this

is a one-sided test, suggests that there is some evidence against the hypothe-
sis that the scale effects are parallel. Finally, we note that, given the size of
the two subsamples, one must view the asymptotic inferences with some cau-
tion. An alternative approach that generally provides better inference in mod-
erately sized samples would be based on the bootstrap, which is discussed in
Chapter 8.

4.6.3 Weather and Electricity Demand

In a classic paper, Engle et al. (1986) used the partial linear model to study
the impact of weather and other variables on electricity demand. We estimate
a similar model in which weather enters nonparametrically and other variables
enter parametrically. Our data consist of 288 quarterly observations in Ontario
for the period 1971 to 1994. The specification is

elect = f (tempt ) + β1relpricet + β2gdpt + ε, (4.6.8)

where elec is the log of electricity sales, temp is heating and cooling degree days
measured relative to 68 ◦F, relprice is the log of the ratio of the price of electricity
to the price of natural gas, and gdp is the log of gross provincial product. We
begin by testing whether electricity sales and gdp are cointegrated under the
assumption that relprice and temp are stationary (setting aside issues of global
warming). The Johansen test indicates a strong cointegrating relationship. We
therefore reestimate the model in the form

elect − gdpt = f (tempt ) + β1relpricet + ε. (4.6.9)

Figure 4.7 contains estimates of a pure parametric specification for which
the temperature effect is modeled using a quadratic as well as estimates of
the partial linear model (4.6.9). The price of electricity relative to natural
gas is negative and quite strongly significant. In the partial linear model, the




