

The Future of

Utility Data Connectivity

mart

etwor

From OZZ Energy Solutions Inc.

Inergy

OZZ Corporation

Ontario Energy Board Smart Meter Implementation Initiative September 17, 2004

Open System Platform

- Open Infrastructure Standards
 - ANSI meter communications
 - IEEE communications
 - Internet e.g. W3C
 - Data Exchange e.g. SQL, EDI
 - Application e.g. Java
- Shared Use Networks
 - Published protocols
 - Multi-source of connectivity
 - Multiple application uses
- Information Exchange

SMI Proposition

- Smart Metering Infrastructure is Not Meter Reading
 - Smart Point-of-Service
 Device
 - Cost and Quality
 - Integral Part of the Distribution Grid
 - Opportunity to serve the consumer

Smart Energy Value

Ontario – Responsive Distribution Infrastructure:

SmartGrid Infrastructure	Integrated networks using intelligent device automation	 Unified Infrastructure SmartMeters SmartControls SmartPipes SmartWires SmartAssets
Smart Grid Solutions	Integrated demand response, efficiency & reliability	 Smart Solutions Customer participation Peak response Reliability response

Alliance Difference

1. ECONOMIC FLEXIBILITY

Shared Infrastructure

- Mobile asset utilization
- Fixed data applications
- Mobile voice & data applications

Scalable Solutions

- High priority first
- Layer additional projects
- Expandable to mass market
- Multi-utility participation

Economic Development

- Canadian labor base
- Canadian technology
- Ontario industry growth

Smart Energy Network

2. RISK MITIGATION

- Smart Network Solutions
 - Wireless
 - For the North American grid
 - Wired
 - For addressable applications

Resources & Experience

- Utility processes & standards
- Canadian smart metering expertise
- Measurement Canada compliance
- Communication network expertise
- Energy networks issues
 - terrestrial, frequency and through put planning
- Ontario-resident resources
- Standards Compliance
 - Future ready
 - Supplier choice

SMI Requirements Input

General Considerations

• Market

- Regulatory minimum that support flexible and dynamic price signals
- Operational
 - Utility and consumer features that ensure ease of operation and use
- Future
 - Flexibility features that allow for sustainable growth and avoidance of stranded assets
- Performance
 - Data quality and reliability, access-to-information
- Standards and Compliance
 - Maximization of Open Standards (ANSI, IEEE, etc.)
 - Hurdles to ensure participation
- Quality of Service
 - Outage frequency and response
- Cost

Smart Meter Infrastructure

BASIC SMI PRINCIPALS:

- The market requirements for SMI, should anticipate an evolving market and the integrated communications relationship with energy consumer.
- Under SMI the meter should become a smart point-of-service device and an integral part of the real-time distribution Grid.
 - SMI is <u>not</u> AMR or Meter Reading!
 - In addition to measuring load, it must be price signal and demand response ready, reliability response, quality-of-service preventative maintenance tracking (e.g. momentary outages)
- To avoid stranded assets, SMI should be based on open systems principals using standards at every possible level, ensuring fair and equitable supplier participation both today and in the future.
- SMI should be economically flexible, minimizing the current cost burden of future features

SMI Requirements

1. Smart Energy Devices (meters)

- Interval data resident in the device
 - Hourly for residential
 - 15 minute for commercial
 - Bi-directional meter data support
- Support variable interval periods
 - Ability to change intervals as needed
 - Hourly, 15 & 5 minutes intervals
 - Temporary granularity to support demand response periods and responsive customer EMS tools
- 2-way communications

- Why?
 - Resident device allows for data recovery in the case of communication failure
 - Delivery of information to non-web connected consumer devices
 - Support for demand response

SMI Requirement

- 2. Smart Reporting
 - Daily reporting
 - Hourly
 - Peak period
 - Outage
 - Exception
 - On-Demand
 - Real-time
 - as long as costs are considered

- Why?
 - Different applications sources require different reporting periods:
 - Billing monthly
 - Customer Service daily, on-demand
 - Customer service requests for call centers operations
 - Change of service
 - Demand Response
 - May need hourly or exception reporting for verification
 - Customer at least daily
 - On-line customer information
 - Quality of service event
 - Filtered reliability information to assist service restoration, preventative maintenance
 - Settlements daily

SMI Requirements

Complete Automation Prioritizing over • 3. **50kW And Selective Demand Response Locations**

- Geographic Coverage
 - Urban, suburban, rural, mountainous
- Commodity _
 - Electric, heat, water, gas
- Customer Classes
 - Residential, schools, commercial, government
- **Customer Sites**
 - Indoor, secure facilities, water pressure pumps, underground, high-rise, agricultural (i.e. pumps), streetlights etc.
- Variety of Meter Types and Suppliers
 - Forms, suppliers
- Consistency with processes & procedures _
 - Labour practices, installation operating procedures, IT standards, change out, maintenance, customer communications

Why?

- **Complete automation** ensure fairness. maximizes economies-ofscale
- **Risk mitigation**
- Incremental cost on 50kW priority is likely under \$400 per commercial customer and can have demand response benefits 2 years earlier
- **Need verification** information to support demand response programs, rate development and program incentives

SMI Requirements

- Economic Automation
 - Capital Costs
 - Equipment, installation, integration, customer notification
 - Operating Costs
 - Communications, replacement
 - Shared Benefits
 - Ability to deliver benefits to legacy applications, new systems and applications
 - Customer/Stakeholder Accessible
 - Web access, energy display
 - Complimentary, Compatible with Controls
 - Verification reporting access

- Why?
 - Holistic costs and benefits
 - Benefits derived from all participants

SMI Requirement

Adaptable Automation – maximize infrastructure that supports demand response.

- Standards Compliance
 - ANSI Metering Standards
 - Interoperable Among Operating Systems and Databases
 - Data Exchange
 - Web Access
- Remotely Configurable
 - Default and dynamic configuration
- Remotely Programmable
 - New measurement requirements, reporting frequency, new network efficiency features, new programs and business practices

- Why?
 - Promotes broader participation
 - Protects against stranded assets
 - Support for unforeseeable requirements
 - Protect against operating "bugs"

SMI Considerations

Should the meter be a gateway?

- Appliances
- Load control
- Internet access

NOT Necessarily Required

As long as there other paths

MAY BE BENEFICIAL, as long as...

- It is economic, secure and equally-accessible and provides consumer benefit.
- As long as it is based on standards

Summary Recommendations

- Adopt industry standards on open smart metering infrastructure wherever possible
- Advanced commercial meters with 15 minute data
- Smart residential meters with a full billing cycle of interval data and 2-way communications
- Variable reporting periods to support multiple applications and particularly demand response
- Complete automation prioritizing 50kW and demand response locations
- Maximize infrastructure that can support future needs for demand response

End-To-End Solutions

THOIN YOUN

The Challenge Unify Diversity

1. Deliver Affordable and Reliable Solutions:

- Multi-Utility Requirements
 - Electric, Gas & Water
- Multiple Network Technology
 - Selective Networks Telephone, Public Wireless
 - Shared Networks Wireless WAN/LAN
- New Applications
 - Commercial Smart Metering
 - Demand Response
 - Residential Smart Metering
- Diverse Utility Legacy Systems

2. Deliver Implementable Programs

SMART ENERGY NETWORK

Smart Energy Applications

STEP ONE: Targeted Programs

- Commercial Smart Metering (CSM)
- Residential Demand Response (RDR)

STEP TWO: Broad Scale Implementations

• Residential Smart Metering (RSM)

STEP THREE: Shared, Incremental Programs

- Share Utility Projects
- Other Fixed Applications
- Other Mobile Applications