

Commercial and Industrial Rate Design for Electricity

Stakeholder Information Session
On Staff Report to the Board
March 2019

Meeting Purpose

- Provide customers and stakeholders with an opportunity to ask clarifying questions about the Staff Report to facilitate preparation of written comments
- Will provide an overview of the Report
- Review OEB staff's rate design recommendations and proposed implementation/mitigation strategies
- Written comments due March 29, 2019

Presentation on Commercial & Industrial

- Rationale for proposing change to rate design
- Consultations
- Staff Report to the Board with recommendations
 - Describes the situation in Ontario and the changes that are causing the need for a new approach to rate design
 - Proposal for GS < 50 kW
 - Analysis, Impacts, and Mitigation
 - GS ≥ 50 kW, Intermediate, and Large
 - Analysis, Impacts, and Mitigation
- Next steps

The rationale for rate design change

- Customers' use of the distribution system has been changing and the changes are expected to accelerate with installation of Distributed generation and storage, other DM
 - They are saving money by avoiding consumption charges
- However, distribution costs are not lowered
 - The customers with generation still require the same level of capacity available on the distribution grid
 - 17 distributors (2 more have applied) have standby charges to address the need to maintain system capacity when a customer installs generation
- Costs are being shifted to other customers
 - The customers' bills go up to pay for the system
- The current rate design is leading to some customers avoiding paying for the system they require
 - Shifting costs to other customers
 - A rate design change will provide a better price signal and support economic choices by customers acting now avoids a risk of more entrenched decisions and costs
- OEB staff has prepared a set of recommended changes in rate design for commercial and industrial customers to address these changes and support innovation
 - Follows from an extensive customer consultation
 - Data analysis and modelling to identify affect on customers
 - Mitigation strategies by implementing over 5 year period

Summary table

Class	Current Rate Design	Proposed Rate Design
General Service Less than 10 kW	Monthly Service Charge + consumption charge (per kWh)	Monthly Service Charge (fully fixed – average cost)
General Service 10 to less than 50kW		Monthly Service Charge + demand charge (per kW)
General Service 50kW and Over	Monthly Service Charge + demand charge (per kW)	Monthly Service Charge + demand charge (per kW) + Capacity Reserve Charge
Large (over 5000 kW)	Monthly Service Charge + demand charge (per kVA)	 Monthly Service Charge + demand charge (per kVA) + Capacity Reserve Charge • Emergency Backup • Maintenance • Bypass

Getting Customer Input

Staff Discussion Paper

- Issued a discussion paper setting out a variety of options for stakeholder feedback
 - Comments suggested refinements which lead to further analysis => recommendations
- Additional staff analysis in response to comments and stakeholder discussions
 - Develop concept of Capacity Reserve Charge for GS≥50 and Large consumers
 - GS<10 is comparable primarily on average peak demand to residential
 - Analysis for typical load profiles (grouping plots)
 - GS<50 and GS>50 customer groupings
 - Regional and provincial demand curves showing fall in demand
- Navigant analysis
 - Develop mock tariffs designed to recover the same distribution revenue using profiles for 103,000 customers from a variety of distributors
 - GS<10 and GS 10 to 50 kW subclasses
 - Calculated rate impacts compared to status-quo rate design
 - Sensitivity analysis for effects on revenue for conservation, and 2 levels of load displacement generation for large customers

Customer meetings-2017/18

- Fall of 2017 held series of meetings with customers and customer associations
 - AMPCO and SEC representatives
 - CME Standing Committee on Energy
 - Environmental Defence
 - AMPCO Board meeting
 - Ontario Association of Physical Plant Administrators
 - CHP consortium of APPrO
 - Staff used those comments to inform the current proposals.
 - Also met with EDA and CLD to get utility implementation view
- CFIB hosted two webinars in October that had a total of 70 business owners participate

Customer survey – January 2018

- OEB staff retained Ipsos to undertake a qualitative customer survey to gather direct customer input on rates and electricity issues for customers in the <50kW class
 - In depth interviews with business owners
 - 6 with 2 to 15 employees (< 10 kW)
 - 9 with 5 to 50 employees (10 to >50 kW)
 - Mostly owners wearing many hats

Top line comments from General Service < 10 kW

- Representatives from restaurants, car repair, craft manufacturer, professional services, internet startup
 - Electricity use is low to minimal
 - Not a lot of specialized equipment
 - · Exception is restaurants because of refrigeration use
 - Review their bills month to month with focus on general consistency in amounts
 - Value reliability over cost since outages cost revenue
 - Interested in conservation not generation
 - Interested in batteries for reliability and arbitrage but capital costs are high
 - Not particularly price sensitive on electricity
 - Don't want to pay for someone else's use fairness and transparency
 - Any change should take place over time not all at once

Customer survey (2)

Top line comments from General Service 10 to 50 kW

- Representatives from restaurant, farm, car dealership, manufacturer, wholesale distributor, multi-use retailer, hotel with restaurant
 - Electricity prices are in top 3 concerns
 - HVAC, refrigeration, lighting, power tools, farming equipment, machinery
 - Business hours dictate use (i.e. no shifting)
 - Have taken steps to control use
 - Interested in new technologies and generation
 - Understand the rationale for changes
 - Mitigation to make changes gradual
 - Want OEB to provide information and programs to help them control costs

Staff Recommendations

Policy objectives for rate designs

- Support innovation for customers by
 - ensuring all commercial and industrial customers of every class can reduce their bill through conservation of the commodity,
 - allowing some customers to reduce their bill through lowering overall demand through conservation, and
 - allowing customers who do not have the opportunity to reduce their bill through lowering demand to benefit from a simpler, more predictable bill.
- Increase efficiency of the system by
 - ensuring that customers who install distributed energy resources do not shift costs to other customers
 - maintaining a reliable and flexible distribution system through a fair and balanced recovery of system costs
 - encouraging cost effective investment in distributed energy resources
- Facilitate investments to modernize the grid in a paced and prioritized manner that will support customer choice and efficiency

General Service < 10 kW

- Currently a monthly service charge + rate x kWh consumed in a month
- Recommendation is to move to fully-fixed distribution rate
- These customers are very similar to residential
 - Similar system use in average maximum demand
 - Similar connection for hardware, voltage, and current
- Mitigation proposal to manage impacts of change
 - Change over 5 years, in same fashion as residential rate design change
 - Increase the Monthly Service Charge by 1/5 of the difference each year
 - Decrease the volumetric rate proportionally
 - Distribution revenue remains unchanged
- Typical bill is \$171 and about 31% of the bill is distribution
- Customers with high consumption will see a decrease while low use consumers will see an increase
- Because the biggest increases are on the smallest use customers (almost no consumption), the increase as a percentage is large.
- The IPSOS survey identified this customer group as not particularly price sensitive

General Service 10 to 50 kW

- Currently a monthly service charge (MSC) + rate x kWh consumed in a month
- Opportunity to move these customers to a more cost reflective charge
 - previously limited by metering but now have Smart Meters
- Recommend change to MSC + rate x maximum consumption in an hour
- Many other jurisdictions are moving to a 3-part bill for smaller customers (fixed charge, demand charge, and consumption charge)
 - Rely on fixed/demand for network and consumption (kwh) for commodity
- Mitigation proposal to manage impacts of change
 - Over 5 years, introduce and gradually increase a rate for maximum consumption in an hour (20% of the change per year). Outliers would see much larger changes
 - Decrease the monthly consumption rate proportionally
 - No change in distribution revenues
- Flat load customers will see a decrease while peaky customers will see an increase to reflect their demand on system capacity requirements
- Our analysis of distributor data has identified a few outlier customers (<1%) with large total bill increases – these are exceptionally peaky customers who are not paying their share of costs – target these customers for programs and technology
- Based on survey and customer meetings we recognize these are a more price sensitive group – changes in pricing will cause behavior changes that will reduce their costs and system costs

General Service 50kW and Over Intermediate and Large Customers

- Customers varied as to whether they are considering distributed generation.
 - Larger customers are more likely to consider it. There is a long time from considering it to having installed generation.
- Load Displacement Generators shift costs to other customers
- Staff recommendations
 - No change to underlying rates
 - No impacts for existing customers without generation
 - New Capacity Reserve Charge for customers with selfgeneration
 - Replace current standby charges with a fairer and more efficient price signal
 - Phase-in for existing customers with self-generation without standby charges
 - Factor into the economic decision for new generation

Capacity Reserve Charge

- Load Displacement Generators (LDG)
 - Helps customers control costs, participate in ICI
 - Effect of reducing distribution charges but not system costs
 - These customers still rely on the distribution system
- Objective of our Proposal
 - Reflect the cost of maintaining capacity in the distribution system to provide emergency backup capacity for an LDG without double charging them
 - Avoid cost shifting from advanced customers (LDG/storage) to more traditional customers
 - Support distributors in right sizing the system to control or reduce costs – end of life and replacement decisions

Staff Recommendation

- Take into account the expectation that the customer will reach and pay for full or partial load at some point in the billing cycle
- Capacity Factor (CF): the ratio of a generator's actual output over a period of time, to its potential output if it were possible for it to operate at full nameplate capacity continuously over the same period of time
- CRC_E = Faceplate capacity x Capacity Factor x underlying demand rate of the distributor
 - OEB determines a table of technology based CFs
 - Customer and LDC could agree on CF for over 3 MW
- Staff expects further discussions with the IESO to refine the CF both in terms of technology specificity and appropriate %

Large customer options (over 5 MW)

- Allow customers choice in the service they want and how much they will pay
- Maintenance service (partial bypass)
 - CRC_M = Faceplate capacity x CF x underlying demand rate of the distributor x off peak factor
 - Off peak factor: some lesser amount than full backup
 - Start with 50% for consultation; could be off peak cost
- Bypass: following the rules of the Cost Responsibility Notice
 - Only over 5 MW
 - Pays Net Book Value of connection assets
 - Renewable exempt
 - Distributor has to have involved customer in 5 year planning exercise (see slide 20)

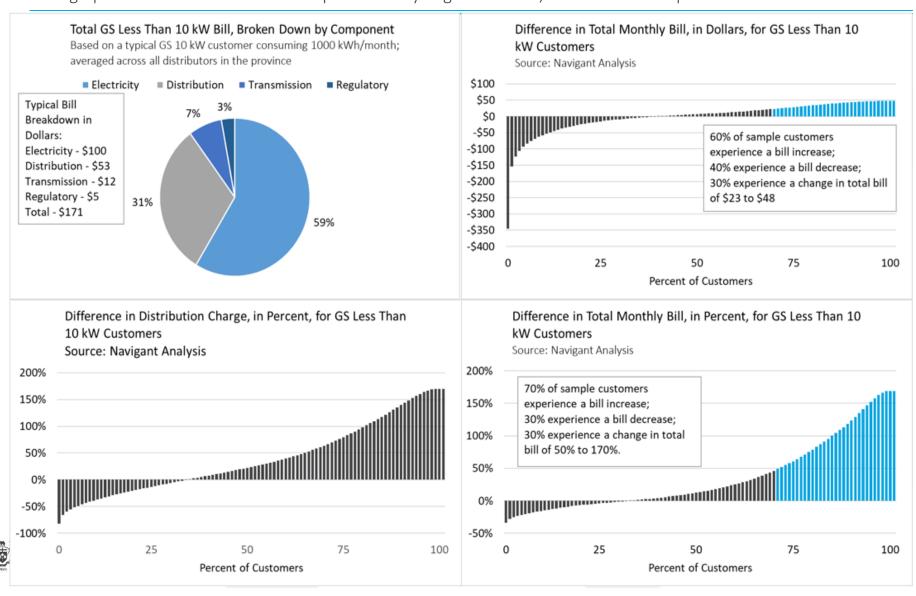
Maintenance and Bypass Issues

- A customer who has chosen maintenance instead of emergency service should face some consequences if it draws full load at peak times otherwise it can game the system – proposing two options for consideration
- Option 1: Physical restraint e.g. a load limiter
 - An LDC with restricted feeder capacity may want this option
 - · Customer takes full risk of not having enough power
 - May result in frequent changes to infrastructure to meet customer needs
 - Has been used in Ontario before
- Option 2: Penalty rates for above contract load e.g. 3X demand rate
 - An LDC with excess capacity may want this option
 - Additional revenue for LDC to offset costs
 - Does not allow LDC to right-size system as capacity needed
 - Used by Ofgem to manage Agreed Supply Capacity

Link to Distribution System Plans

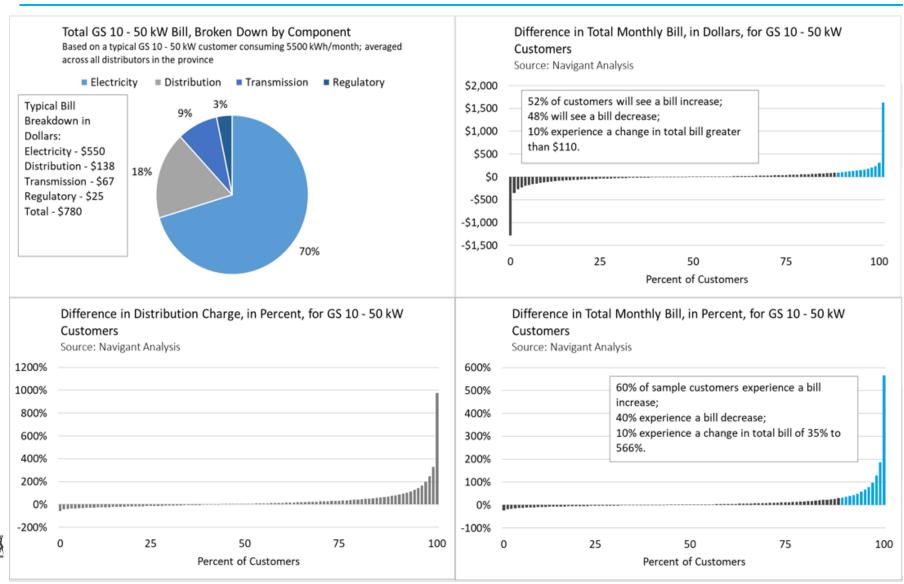
- Large customers have a capital planning process
 - Based on input we understand that it can be up to 7 years for LDG from idea to operation
- Distribution System Plans have a 5 year horizon
 - End of life or capacity expansions are key to optimizing investments – right sizing
 - New rules under DSC require distributors to consult with large customers on forecast needs, including potential for LDG/storage
 - Otherwise LDC is not entitled to bypass payment

CRC implementation and mitigation plans


- New CRC would apply to all newly installed generation once tariff is approved
- CRC would replace the existing stand by charges where they previously applied
- For previously installed generation for which a standby charge has not applied
 - Recognition of customer investment
 - CRC applies with factor that increases by 10% each year i.e. year 1: 10%, year 2: 20%
 - to account for depreciation of asset
- LDC could waive all or part of CRC if system benefits from customer generation

Next Steps

- Meetings with stakeholders
- Written comments from stakeholders


Average total monthly bill and distribution impacts for GS less than 10 kW customers

Note: For graphs below bill decreases are represented by negative values; bill increases are positive

Average total monthly bill and distribution impacts for GS 10-50 kW customers

Note: For graphs below bill decreases are represented by negative values; bill increases are positive

Samples of Potential Capacity Factors

Туре	Installation	Capacity Factor
Solar	Rooftop – fixed	10
	Ground mounted – tracking	20
	With storage	50
Wind	Onshore	30
	With storage	50
Bioenergy	Standard	40
	With storage	50
Combined Heat and Power	Heat following	50
	Full operation	65
Fossil	Certificate of approval limited	15
	Full operation	65