### London Hydro Perspectives on DER Challenges and Utility Remunerations

OEB Consultation Forum on DER and Utility Remuneration

September 17-19, 2019



## Outline

- DER Challenges
  - Types of DERs
  - Electric Grid Challenges (for and due to DERs)
  - DER Ownership
- Utility Remuneration
  - Gross kW Billing for DERs
  - System Upgrade Costs
  - Innovation
  - Other Comments on Utility Rate Making and Code Reform

#### EDA's Vision Papers Are Relevant

Vision Paper #1: Power to Connect



#### EDA's Vision Papers Are Relevant

• Vision Paper #2: Roadmap for Ontario's Electricity Distributors



### Different Types - Different Challenges

#### 1. Inverter Connected DERs: Solar, Wind, Storage

- Low availability factors
- Intermittent and unpredictable (storage can help mitigate this challenge for short duration)
- Challenging to rely upon for peak capacity planning
- Contribution to rising fault levels
- Give rise to increased levels of harmonics in the grid
- Absence of rotating inertia (synthetic inertia can be created through smart inverters)

#### 2. Induction Generators Connected DERs (Wind)

- Similar challenges as above
- 3. Synchronous Generator Connected DERs (CHP, Cogens, µturbines)
  - Increasing contributions to fault levels
- 4. Load Shedding DERs: DR Loads, Controlled Water Heaters, Controlled HVAC Systems, etc.

MicroGrids (µGrids), made up of many of the above systems, can provide greater benefits to all stakeholders

### Electric Grid Challenges<sup>1</sup>

- 1. To maintain reliability norms, distribution system planning is carried out for peak capacity
- 2. Short circuit current contribution would often limit the deployment of DERs:
  - Inverters Connected System: Short circuit current limited to 125% of full load for up to one to two cycles
  - Induction Generator: 700% of full load current up to 10 cycles
  - Synchronous Generator: Instantaneous contribution of 600% to 1000%, reducing to 300% from four cycles to 10 seconds.

If the capacity (kW) of DER is much smaller than the minimum kW load on a distribution feeder, the protection challenges can be mitigated

<sup>1</sup>: EV chargers do not contribute to these challenges unless they are configured as storage to discharge into the grid

### Electric Grid Challenges<sup>1</sup>

- 3. Operational flexibility can cause forced outages of DERs
- 4. The above challenges can be mitigated to an extent by upgrading the network:
  - Two-way communication with DERs
  - Utility control of DERs
  - Limiting the fault contributions
  - Upgrading the network and substations

## Should upgrade be pre-planned and rate based or DERs to pay for necessary upgrades?

<sup>1</sup>: EV chargers do not contribute to these challenges unless they are configured as storage to discharge into the grid

### Grid Challenges - Capacity Issue

| Transformer<br>Station | Type of DESN Station                        | Number of<br>Feeders | ~Permitted<br>DERs<br>Capacity –<br>(Inverter Based) |
|------------------------|---------------------------------------------|----------------------|------------------------------------------------------|
| Buchanan               | Bermondsey                                  | LH-11; Others-1      | 12 MW                                                |
| Clarke                 | Jones                                       | LH-7; Others-1       | 30 MW                                                |
| Highbury               | Jones                                       | LH-7; Others-1       | 19 MW                                                |
| Talbot                 | Talbot #1 – Jones<br>Talbot #2 - Bermondsey | LH-8<br>LH-12        | 0 MW<br>27 MW                                        |
| Wonderland             | Jones                                       | LH-7; Others-1       | 9 MW                                                 |
| Nelson                 | Jones                                       | LH-17                | 0 MW                                                 |

### DER Ownership

- Merchant DERs
- Class A C& I customers owned DERs
- Grid Engineered DERs utility designed, owned and operated which offer broad benefits for the distribution system.
- MicroGrids can offer greater value

Both utility and non-utility ownerships should be permitted. Utility ownership justified where it provides the greatest value to the grid.

### Utility Remuneration

- All generators, going forward, and DERs should be assessed distribution/transmission fees to connect to the grid
  - All DERs should be metered.
  - Gross kW(load) billing or on a fixed fees basis, demarcated by nameplate kW ratings
- How to address the challenges of system upgrade and who pays for it?
  - OEB can take an active role and is encouraging utilities to expand the grid capabilities of accepting increasing DERs, perhaps on an incremental basis to mitigate the rate shocks.
  - It can be part of the distribution system planning exercise
  - DERs to pay for the necessary upgrades

### Other Rate Making Comments

Our customers consume, produce and store electricity. These three functions require utilities to be more dynamic in deploying increasing modes of technologies.

- 1. DER resources: Utilities should be allowed to include those DERs in the rate base that assist in enhancing the system performance.
- 2. Cloud services provide us reduced lifecycle costs of new technologies; however, they are not included for consideration in rate base and hence discourage optimal investments decision making for utilities.
- 3. Like cloud services, shared services between utilities can lead to optimal outcomes but are discouraged resulting in lost opportunity.
- 4. We need to reward utilities for promoting the use of least cost solutions such as cloud solutions and shared services.
- 5. Additionally, build systemic funding in the cost of service model for promotion of innovative solutions i.e. to reflect the R&D initiatives.
- 6. Utilities should be allowed to compete in the consumer market offering more services for it's customers without being constrained by affiliate rules.

# SRED benefits get reconciled (loss of revenue) at the Cost of Service Rate Application



### London Hydro R&D Projects

| PROJECT NAME                                | TIMELINE       | PARTNERS                                                  | TOTAL \$   | LONDON HYDRO<br>CONTRIBUTION \$ |
|---------------------------------------------|----------------|-----------------------------------------------------------|------------|---------------------------------|
| Canada/UK DER<br>Power Forward<br>Challenge | 2019 - 2020    | NRCAN, Electron,<br>Enmax, Navigant,<br>Western, Gowlings | 3,000,000  | 250,000                         |
| Elocity                                     | 2018 - 2020    | Smart Grid Fund,<br>Ryerson                               | 250,000    | 125,000                         |
| Home Scheduler                              | 2019 - ongoing | Under NDA                                                 | 1,300,000  | 75,000                          |
| RPP CPP                                     | 2017-2019      | OEB, Navigant,<br>Rainforest<br>Automation,               | 2,731,000  | 360,000                         |
| West5 MicroGrid                             | 2019-2022      | NRCAN, Sifton<br>Properties, s2e Solar                    | 11,500,000 | 348,000                         |

As local electricity distributors, LDCs are best able to provide relevant solutions to customers and deliver on government policies.

**Encourage Innovation, Efficiency:** At minimum, avoid penalizing the efficiency and innovation. Encourage investment in the future grid!